The ‘Butterfly effect’ in Cayley graphs with applications to genomics

[1]  Raul Rabadan,et al.  Frequency Analysis Techniques for Identification of Viral Genetic Data , 2010, mBio.

[2]  Jens Stoye,et al.  A new linear time algorithm to compute the genomic distance via the double cut and join distance , 2009, Theor. Comput. Sci..

[3]  Gene Cooperman,et al.  Harnessing parallel disks to solve Rubik's cube , 2009, J. Symb. Comput..

[4]  Guillaume Fertin,et al.  Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.

[5]  Elena Konstantinova,et al.  Some problems on Cayley graphs , 2008 .

[6]  Sagi Snir,et al.  Fast and reliable reconstruction of phylogenetic trees with very short edges , 2008, SODA '08.

[7]  Amit U. Sinha,et al.  Sensitivity Analysis for Reversal Distance and Breakpoint Reuse in Genome Rearrangements , 2007, Pacific Symposium on Biocomputing.

[8]  Elchanan Mossel,et al.  How much can evolved characters tell us about the tree that generated them? , 2004, Mathematics of Evolution and Phylogeny.

[9]  Lung Lu Chin,et al.  Analysis of genome rearrangement by block-interchanges. , 2007 .

[10]  C. Tang,et al.  Analysis of genome rearrangement by block-interchanges. , 2007, Methods in molecular biology.

[11]  Anthony Labarre,et al.  New Bounds and Tractable Instances for the Transposition Distance , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  Tandy J. Warnow,et al.  Distance-Based Genome Rearrangement Phylogeny , 2006, Journal of Molecular Evolution.

[13]  Elchanan Mossel,et al.  Evolutionary trees and the Ising model on the Bethe lattice: a proof of Steel’s conjecture , 2005, ArXiv.

[14]  David Sankoff,et al.  Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement , 1995, Algorithmica.

[15]  Olivier Gascuel,et al.  Mathematics of Evolution and Phylogeny , 2005 .

[16]  R. Hilborn Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics , 2004 .

[17]  Li-San Wang,et al.  Genome Rearrangement Phylogeny Using Weighbor , 2002, WABI.

[18]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[19]  P. Pevzner,et al.  Computational Molecular Biology , 2000 .

[20]  Tandy J. Warnow,et al.  A Few Logs Suffice to Build (almost) All Trees: Part II , 1999, Theor. Comput. Sci..

[21]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[22]  David Sankoff,et al.  Multiple Genome Rearrangement and Breakpoint Phylogeny , 1998, J. Comput. Biol..

[23]  P. Erdös,et al.  A few logs suffice to build (almost) all trees (l): part I , 1997 .

[24]  David Sankoff,et al.  The Median Problem for Breakpoints in Comparative Genomics , 1997, COCOON.

[25]  João Meidanis,et al.  Introduction to computational molecular biology , 1997 .

[26]  Steven Skiena,et al.  Sorting with Fixed-length Reversals , 1996, Discret. Appl. Math..

[27]  Petra Mutzel,et al.  Computational Molecular Biology , 1996 .

[28]  P. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, STOC '95.

[29]  Richard A. Holmgren A First Course in Discrete Dynamical Systems , 1994 .

[30]  Vineet Bafna,et al.  Genome rearrangements and sorting by reversals , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[31]  Terence P. Speed,et al.  Invariants of Some Probability Models Used in Phylogenetic Inference , 1993 .

[32]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[33]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[34]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[35]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .

[36]  J. Steele An Efron-Stein inequality for nonsymmetric statistics , 1986 .

[37]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Rotman An Introduction to the Theory of Groups , 1965 .