Affine geometry designs, polarities, and Hamada's conjecture

In a recent paper, two of the authors used polarities in PG(2d-1,p) (p>=2 prime, d>=2) to construct non-geometric designs having the same parameters and the same p-rank as the geometric design PG"d(2d,p) having as blocks the d-subspaces in the projective space PG(2d,p), hence providing the first known infinite family of examples where projective geometry designs are not characterized by their p-rank, as it is the case in all known proven cases of Hamada's conjecture. In this paper, the construction based on polarities is extended to produce designs having the same parameters, intersection numbers, and 2-rank as the geometric design AG"d"+"1(2d+1,2) of the (d+1)-subspaces in the binary affine geometry AG(2d+1,2). These designs generalize one of the four non-geometric self-orthogonal 3-(32,8,7) designs of 2-rank 16 (V.D. Tonchev, 1986 [12]), and provide the only known infinite family of examples where affine geometry designs are not characterized by their rank.