Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials

This work investigates dynamic failure processes in homogeneous and functionally graded materials (FGMs). The failure criterion is incorporated in the cohesive zone model (CZM) using both a finite cohesive strength and work to fracture in the material description. A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gradation is approximated at the element level using a graded element formulation. Examples are provided to verify the numerical approach, and to investigate the influence of material gradation on crack initiation and propagation in Mode-I as well as in mixed-mode fracture problems. The examples include spontaneous rapid crack growth in homogeneous and FGM strips, dynamic crack propagation in actual monolithic and epoxy/glass FGM beams (three-point bending) under impact loading, and mixed-mode crack propagation in pre-cracked steel and graded plates.

[1]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[2]  Glaucio H. Paulino,et al.  Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading , 2004 .

[3]  Horacio Dante Espinosa,et al.  Grain level analysis of crack initiation and propagation in brittle materials , 2001 .

[4]  T. Belytschko,et al.  Efficient large scale non‐linear transient analysis by finite elements , 1976 .

[5]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[6]  T. Siegmund,et al.  A thermomechanical cohesive zone model for bridged delamination cracks , 2004 .

[7]  Geoffrey Barratt Warburton The dynamical behaviour of structures , 1976 .

[8]  L. Prandtl,et al.  Ein Gedankenmodell für den Zerreißvorgang spröder Körper , 1933 .

[9]  Glaucio H. Paulino,et al.  T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method , 2003 .

[10]  B. Chen,et al.  Development and Ballistic Testing of a Functionally Gradient Ceramic/Metal Applique , 1999 .

[11]  Francesco Costanzo,et al.  A study of dynamic crack growth in elastic materials using a cohesive zone model , 1997 .

[12]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[13]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[14]  J. Rice,et al.  A critical evaluation of dynamic fracture simulations using cohesive surfaces , 2001, cond-mat/0106304.

[15]  G. Paulino,et al.  Finite element evaluation of mixed mode stress intensity factors in functionally graded materials , 2002 .

[16]  Glaucio H. Paulino,et al.  Micromechanics-based elastic model for functionally graded materials with particle interactions , 2004 .

[17]  Huajian Gao,et al.  Crack nucleation and growth as strain localization in a virtual-bond continuum , 1998 .

[18]  Ernest S. C. Chin,et al.  Army focused research team on functionally graded armor composites , 1999 .

[19]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[20]  T. Siegmund,et al.  An irreversible cohesive zone model for interface fatigue crack growth simulation , 2003 .

[21]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[22]  M. Elices,et al.  On the initial shape of the softening function of cohesive materials , 1997, International Journal of Fracture.

[23]  A. Kawasaki,et al.  Functionally graded materials : design, processing and applications , 1999 .

[24]  K. Bathe Finite Element Procedures , 1995 .

[25]  J. W. Eischen,et al.  Fracture of nonhomogeneous materials , 1987, International Journal of Fracture.

[26]  H. Tippur,et al.  Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: Cracks parallel to elastic gradient , 2002 .

[27]  H. Tippur,et al.  Dynamic fracture of compositionally graded materials with cracks along the elastic gradient: experiments and analysis , 2001 .

[28]  David H. Allen,et al.  Damage Dependent Constitutive Behavior and Energy Release Rate for a Cohesive Zone in a Thermoviscoelastic Solid , 1999 .

[29]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[30]  Emmanuel M Detournay,et al.  The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid , 2003, Journal of Fluid Mechanics.

[31]  Glaucio H. Paulino,et al.  Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method , 2002 .

[32]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[33]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[34]  Fazil Erdogan Fracture mechanics of functionally graded materials , 1995 .

[35]  Glaucio H. Paulino,et al.  Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model , 2002 .

[36]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[37]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[38]  Hareesh V. Tippur,et al.  Influence of elastic gradient profiles on dynamically loaded functionally graded materials: cracks along the gradient , 2001 .

[39]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[40]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[41]  Glaucio H. Paulino,et al.  The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors , 2003 .

[42]  R. Hill Acceleration waves in solids , 1962 .

[43]  Michael H. Santare,et al.  Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials , 2000 .

[44]  E. Orowan,et al.  Fracture and strength of solids , 1949 .

[45]  Steven M. Arnold,et al.  Chapter 11 – Higher-Order Theory for Functionally Graded Materials , 1999 .

[46]  Michael Ortiz,et al.  An Efficient Adaptive Procedure for Three-Dimensional Fragmentation Simulations , 2001, Engineering with Computers.

[47]  J. W. Foulk,et al.  Physics-based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods , 2000 .

[48]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[49]  H. Tippur,et al.  Influence of elastic variations on crack initiation in functionally graded glass-filled epoxy , 2002 .

[50]  Glaucio H. Paulino,et al.  Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials , 2003 .

[51]  G. Paulino,et al.  ISOPARAMETRIC GRADED FINITE ELEMENTS FOR NONHOMOGENEOUS ISOTROPIC AND ORTHOTROPIC MATERIALS , 2002 .

[52]  R. H. Dodds,et al.  Cohesive fracture modeling of elastic–plastic crack growth in functionally graded materials , 2003 .

[53]  J. Eischen An improved method for computing the J2 integral , 1987 .

[54]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .

[55]  Stephen A. Vavasis,et al.  Time continuity in cohesive finite element modeling , 2003 .

[56]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[57]  A. Rosakis,et al.  On the growth of shear bands and failure-mode transition in prenotched plates: A comparison of singly and doubly notched specimens , 1998 .

[58]  N. Chandra,et al.  Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models , 2003 .

[59]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[60]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[61]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[62]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[63]  V. Prakash,et al.  Dynamic brittle fracture of high strength structuralsteels underconditions of plane strain , 1999 .

[64]  I. Scheider,et al.  On the practical application of the cohesive model , 2003 .

[65]  Hareesh V. Tippur,et al.  COMPOSITIONALLY GRADED MATERIALS WITH CRACKS NORMAL TO THE ELASTIC GRADIENT , 2000 .

[66]  Glaucio H. Paulino,et al.  On the Poisson's Ratio Effect on Mixed-mode Stress Intensity Factors and T-stress in Functionally Graded Materials , 2004, Int. J. Comput. Eng. Sci..

[67]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[68]  Wolfgang G. Knauss,et al.  Crack Propagation in a Nonlinearly Viscoelastic Solid With Relevance to Adhesive Bond Failure , 1993 .

[69]  Viggo Tvergaard,et al.  Cohesive zone representations of failure between elastic or rigid solids and ductile solids , 2003 .

[70]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories , 1993 .

[71]  J. Dolbow,et al.  On the computation of mixed-mode stress intensity factors in functionally graded materials , 2002 .

[72]  Glaucio H. Paulino,et al.  An accurate scheme for mixed‐mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models , 2003 .

[73]  J. Aboudi,et al.  Higher-order theory for periodic multiphase materials with inelastic phases , 2003 .

[74]  John R. Rice,et al.  A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .