Enantioselective Automultiplication of Chiral Molecules by Asymmetric Autocatalysis

Asymmetric autocatalysis is a process of automultiplication of a chiral compound in which chiral product acts as a chiral catalyst for its own production. The discovery and the development of asymmetric autocatalysis of pyrimidyl-, quinolyl-, and pyridylalkanols are described in the enantioselective additions of diisopropylzinc to the corresponding nitrogen-containing aldehydes. (Alkynylpyrimidyl)alkanols automultiply with a yield of over 99% and over 99.5% ee. Asymmetric autocatalysts with extremely low ee's automultiply with significant amplification of ee's without the need for any other chiral auxiliaries. Small enantiomeric imbalances of chiral molecules induced by physical factors can be amplified by the present asymmetric autocatalysis.