Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures

Abstract In rare event analysis, the estimation of the failure probability is a crucial objective. However, focusing only on the occurrence of the failure event may be insufficient to entirely characterize the reliability of the considered system. This paper provides a common estimation scheme of two complementary moment independent sensitivity measures, allowing to improve the understanding of the system’s rare event. Numerical applications are performed in order to show the effectiveness of the proposed estimation procedure.

[1]  Nicolas Gayton,et al.  Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout , 2019, Springer Optimization and Its Applications.

[2]  Yanping Wang,et al.  A new efficient simulation method based on Bayes' theorem and importance sampling Markov chain simulation to estimate the failure-probability-based global sensitivity measure , 2018 .

[3]  G. Roberts,et al.  Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets , 2009, 0909.0856.

[4]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[5]  Jérôme Morio,et al.  A nonparametric importance sampling estimator for moment independent importance measures , 2019, Reliab. Eng. Syst. Saf..

[6]  Emanuele Borgonovo,et al.  Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..

[7]  Gerhart I. Schuëller,et al.  Time Variant Reliability Analysis Utilizing Response Surface Approach , 1989 .

[8]  Emanuele Borgonovo,et al.  Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..

[9]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[10]  Wenrui Hao,et al.  Efficient sampling methods for global reliability sensitivity analysis , 2012, Comput. Phys. Commun..

[11]  M. Pandey,et al.  Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method , 2013 .

[12]  S. Tarantola,et al.  Moment independent and variance‐based sensitivity analysis with correlations: An application to the stability of a chemical reactor , 2008 .

[13]  Robert E. Melchers,et al.  Radial Importance Sampling for Structural Reliability , 1990 .

[14]  Qiao Liu,et al.  A new computational method of a moment-independent uncertainty importance measure , 2009, Reliab. Eng. Syst. Saf..

[15]  Emanuele Borgonovo,et al.  A Common Rationale for Global Sensitivity Measures and Their Estimation , 2016, Risk analysis : an official publication of the Society for Risk Analysis.

[16]  Li Luyi,et al.  Moment-independent importance measure of basic variable and its state dependent parameter solution , 2012 .

[17]  G. Defaux,et al.  Efficient Evaluation of Reliability-Oriented Sensitivity Indices , 2019, J. Sci. Comput..

[18]  Sébastien Da Veiga Global sensitivity analysis with dependence measures , 2015 .

[19]  Pierre Del Moral,et al.  Sequential Monte Carlo for rare event estimation , 2012, Stat. Comput..

[20]  Zhenzhou Lu,et al.  A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure , 2014, Reliab. Eng. Syst. Saf..

[21]  B. Iooss,et al.  Density modification-based reliability sensitivity analysis , 2012, 1210.1074.

[22]  Zhenzhou Lu,et al.  An efficient method for estimating global sensitivity indices , 2016 .

[23]  Hongping Zhu,et al.  Assessing small failure probabilities by AK–SS: An active learning method combining Kriging and Subset Simulation , 2016 .

[24]  Jérôme Morio,et al.  Estimation of high-order moment-independent importance measures for Shapley value analysis , 2020 .

[25]  Zhen-zhou Lü,et al.  Moment-independent importance measure of basic random variable and its probability density evolution solution , 2010 .

[26]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[27]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[28]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[29]  Zhenzhou Lu,et al.  An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy , 2019, Reliab. Eng. Syst. Saf..

[30]  Nicolas Gayton,et al.  A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models , 2013, Reliab. Eng. Syst. Saf..

[31]  Zhenzhou Lu,et al.  Moment‐Independent Sensitivity Analysis Using Copula , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[32]  Jérôme Morio,et al.  ESTIMATION OF MOMENT INDEPENDENT IMPORTANCE MEASURES USING A COPULA AND MAXIMUM ENTROPY FRAMEWORK , 2018, 2018 Winter Simulation Conference (WSC).

[33]  Zhenzhou Lu,et al.  Variable importance analysis: A comprehensive review , 2015, Reliab. Eng. Syst. Saf..

[34]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[35]  Siu-Kui Au,et al.  Probabilistic Failure Analysis by Importance Sampling Markov Chain Simulation , 2004 .

[36]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[37]  Zhenzhou Lu,et al.  Monte Carlo simulation for moment-independent sensitivity analysis , 2013, Reliab. Eng. Syst. Saf..