Robust Gift Wrapping for the Three-Dimensional Convex Hull

A conventional gift-wrapping algorithm for constructing the three-dimensional convex hull is revised into a numerically robust one. The proposed algorithm places the highest priority on the topological condition that the boundary of the convex hull should be isomorphic to a sphere, and uses numerical values as lower-prirority information for choosing one among the combinatorially consistent branches. No matter how poor the arithmetic precision may be, the algorithm carries out its task and gives as the output a topologically consistent approximation to the true convex hull.

[1]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[2]  L. A. Li︠u︡sternik Convex figures and polyhedra , 1966 .

[3]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[4]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[5]  Charles E. Buckley A Divide-and-Conquer Algorithm for Computing 4-Dimensional Convex Hulls , 1988, Workshop on Computational Geometry.

[6]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[7]  Victor J. Milenkovic,et al.  Verifiable Implementations of Geometric Algorithms Using Finite Precision Arithmetic , 1989, Artif. Intell..

[8]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[11]  William F. Eddy,et al.  A New Convex Hull Algorithm for Planar Sets , 1977, TOMS.

[12]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[13]  GARRET SWART,et al.  Finding the Convex Hull Facet by Facet , 1985, J. Algorithms.

[14]  Steven Fortune,et al.  Stable maintenance of point set triangulations in two dimensions , 1989, 30th Annual Symposium on Foundations of Computer Science.

[15]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[16]  Kokichi Sugihara Topologically Consistent Algorithms Realted to Convex Polyhedra , 1992, ISAAC.

[17]  William O. J. Moser,et al.  Problems, problems, problems , 1991, Discret. Appl. Math..