Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

Given two graphs G and H as input, the Induced Subgraph Isomorphism (ISI) problem is to decide whether G has an induced subgraph that is isomorphic to H. This problem is NP-complete already when G and H are restricted to disjoint unions of paths, and consequently also NP-complete on proper interval graphs and on bipartite permutation graphs. We show that ISI can be solved in polynomial time on proper interval graphs and on bipartite permutation graphs, provided that H is connected. As a consequence, we obtain that ISI is fixed-parameter tractable on these two graph classes, when parametrised by the number of connected components of H. Our results contrast and complement the following known results: W 1 -hardness of ISI on interval graphs when parametrised by the number of vertices of H, NP-completeness of ISI on connected interval graphs and on connected permutation graphs, and NP-completeness of Subgraph Isomorphism on connected proper interval graphs and connected bipartite permutation graphs.

[1]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[2]  Dániel Marx,et al.  Cleaning Interval Graphs , 2010, Algorithmica.

[3]  Peter Damaschke,et al.  Induced Subgraph Isomorphism for Cographs in NP-Complete , 1990, WG.

[4]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[5]  Maciej M. SysŁ The subgraph isomorphism problem for outerplanar graphs , 1982 .

[6]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[7]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[8]  Leizhen Cai,et al.  Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems , 2006, IWPEC.

[9]  Pinar Heggernes,et al.  Induced Subgraph Isomorphism on Interval and Proper Interval Graphs , 2010, ISAAC.

[10]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[11]  Pim van 't Hof,et al.  Edge contractions in subclasses of chordal graphs , 2011, Discret. Appl. Math..

[12]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[13]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[14]  Dieter Kratsch,et al.  Domination on Cocomparability Graphs , 1993, SIAM J. Discret. Math..

[15]  Yota Otachi,et al.  Subgraph isomorphism in graph classes , 2012, Discret. Math..

[16]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  D. Matula Subtree Isomorphism in O(n5/2) , 1978 .

[20]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[21]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[22]  Louis Ibarra,et al.  The clique-separator graph for chordal graphs , 2009, Discret. Appl. Math..