Super-polynomial accuracy of one dimensional randomized nets using the median-of-means

Let f be analytic on [0, 1] with |f (1/2)| 6 Aαk! for some constant A and α < 2. We show that the median estimate of μ = ∫ 1 0 f(x) dx under random linear scrambling with n = 2 points converges at the rate O(n−c ) for any c < 3 log(2)/π ≈ 0.21. We also get a superpolynomial convergence rate for the sample median of 2k − 1 random linearly scrambled estimates, when k = Ω(m). When f has a p’th derivative that satisfies a λ-Hölder condition then the median-of-means has error O(n−(p+λ)+ ) for any > 0, if k →∞ as m→∞.

[1]  Josef Dick,et al.  Construction of Interlaced Scrambled Polynomial Lattice Rules of Arbitrary High Order , 2013, Found. Comput. Math..

[2]  J. Dick Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands , 2010, 1007.0842.

[3]  Alexander Keller,et al.  Quasi-Monte Carlo Image Synthesis in a Nutshell , 2013 .

[4]  P. Marion,et al.  A Tool for Custom Construction of QMC and RQMC Point Sets , 2020, MCQMC.

[5]  F. Lether,et al.  Elementary approximations for Dawson's integral , 1991 .

[6]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[7]  Fred J. Hickernell,et al.  Quasi-Monte Carlo Software , 2021, MCQMC.

[8]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[9]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[10]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[11]  Matthieu Lerasle,et al.  ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS: THEORY AND PRACTICE , 2019 .

[12]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[13]  S. Heinrich,et al.  Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms , 2002 .

[14]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[15]  Josef Dick,et al.  Construction of interlaced polynomial lattice rules for infinitely differentiable functions , 2016, Numerische Mathematik.

[16]  Kosuke Suzuki WAFOM on abelian groups for quasi-Monte Carlo point sets , 2014, 1403.7276.

[17]  Mohammadreza Bidar,et al.  Partition of an Integer into Distinct Bounded Parts, Identities and Bounds , 2012, Integers.

[18]  D. W. Arthur,et al.  Methods of numerical Integration (2nd edition), by Philip J. Davis and Philip Rabinowitz. Pp 612. £36·50. 1984. ISBN 0-12-206360-0 (Academic Press) , 1986, The Mathematical Gazette.

[19]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .