Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Jorge Lima | João Almeida | Mikko Sipilä | Katrianne Lehtipalo | Mikael Ehn | John H. Seinfeld | Serge Mathot | Richard C. Flagan | Pierre Minginette | Aron Vrtala | Douglas R. Worsnop | Ari Laaksonen | Sandra Mogo | Ernest Weingartner | Urs Baltensperger | Heikki Junninen | Sebastian Ehrhart | Antti Onnela | Axel Metzger | Tuukka Petäjä | Paul M. Winkler | Kenneth S. Carslaw | Tuomo Nieminen | Paul E. Wagner | Jasper Kirkby | Markku Kulmala | Frank Stratmann | Stefan Haider | J. Seinfeld | T. Petäjä | P. Winkler | S. Haider | D. Worsnop | R. Flagan | J. Vanhanen | Y. Viisanen | J. Kirkby | M. Kulmala | U. Baltensperger | K. Carslaw | Y. Stozhkov | F. Stratmann | E. Weingartner | T. Nieminen | A. Laaksonen | H. Junninen | F. Riccobono | A. Franchin | D. Hauser | A. Onnela | A. Hansel | D. Wimmer | W. Jud | A. Metzger | J. Dommen | M. Ehn | H. Wex | M. Sipilä | L. Ickes | E. Lovejoy | Josef Dommen | Jonathan Duplissy | Armin Hansel | V. Makhmutov | K. Lehtipalo | S. Schobesberger | J. Curtius | Ralf Schnitzhofer | Jyri Mikkilä | Edward R. Lovejoy | J. Lima | Federico Bianchi | Joachim Curtius | Yuri Stozhkov | Heike Wex | Eimear Dunne | Alessandro Franchin | Stéphanie Gagné | Luisa Ickes | Andreas Kürten | Agnieszka Kupc | Francesco Riccobono | Linda Rondo | Siegfried Schobesberger | Georgios Tsagkogeorgas | Daniela Wimmer | Antonio Amorim | Martin Breitenlechner | André David | Andrew Downard | Daniel Hauser | Werner Jud | Fabian Kreissl | Alexander Kvashin | Vladimir Makhmutov | Paulo Pereira | Antonio Tomé | Joonas Vanhanen | Yrjo Viisanen | Hansueli Walther | M. Breitenlechner | S. Gagné | S. Mathot | J. Duplissy | A. Kupc | J. Mikkilä | F. Bianchi | P. Wagner | A. Vrtala | A. Kürten | R. Schnitzhofer | A. Tomé | S. Ehrhart | P. Minginette | A. Amorim | L. Rondo | S. Mogo | J. Almeida | E. Dunne | G. Tsagkogeorgas | H. Walther | A. David | Andrew J. Downard | F. Kreissl | A. Kvashin | P. Pereira | Federico Bianchi

[1]  P. Adams,et al.  Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? , 2009 .

[2]  Renyi Zhang,et al.  Atmospheric nanoparticles formed from heterogeneous reactions of organics , 2010 .

[3]  C. Kuang,et al.  Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations , 2008 .

[4]  M. Kulmala,et al.  On the formation and growth of atmospheric nanoparticles , 2008 .

[5]  F. Arnold,et al.  Laboratory study of cluster ions formation in H2SO4–H2O system: Implications for threshold concentration of gaseous H2SO4 and ion-induced nucleation kinetics , 2007 .

[6]  Henrik Svensmark,et al.  Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships , 1997 .

[7]  R. Flagan,et al.  Radial Differential Mobility Analyzer for One Nanometer Particle Classification , 2009 .

[8]  R. Dingenen,et al.  The role of ion-induced aerosol formation in the lower atmosphere , 1986 .

[9]  F. Arnold,et al.  Cosmic ray‐induced aerosol‐formation: First observational evidence from aircraft‐based ion mass spectrometer measurements in the upper troposphere , 2002 .

[10]  G. Feingold,et al.  Cloud–Aerosol Interactions from the Micro to the Cloud Scale , 2009 .

[11]  K. Froyd,et al.  Experimental Thermodynamics of Cluster Ions Composed of H2SO4 and H2O. 1. Positive Ions , 2003 .

[12]  G. Mann,et al.  Contribution of particle formation to global cloud condensation nuclei concentrations , 2008 .

[13]  D. R. Hanson,et al.  Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors , 1999 .

[14]  A. Wisthaler,et al.  O2+ as reagent ion in the PTR-MS instrument , 2007 .

[15]  M. Pihlatie,et al.  Sulphuric acid closure and contribution to nucleation mode particle growth , 2004 .

[16]  Josef Polny,et al.  Results from the CERN pilot CLOUD experiment , 2009 .

[17]  J. Kirkby Cosmic Rays and Climate , 2005, 0804.1938.

[18]  Mikael Ehn,et al.  Observations of aminium salts in atmospheric nanoparticles and possible climatic implications , 2010, Proceedings of the National Academy of Sciences.

[19]  I. Riipinen,et al.  Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the influence of organic compounds , 2009 .

[20]  Renyi Zhang,et al.  Getting to the Critical Nucleus of Aerosol Formation , 2010, Science.

[21]  I. Riipinen,et al.  Atmospheric Chemistry and Physics Atmospheric Nucleation: Highlights of the Eucaari Project and Future Directions , 2022 .

[22]  John H. Seinfeld,et al.  Secondary aerosol formation from atmospheric reactions of aliphatic amines , 2007 .

[23]  T. Petäjä,et al.  Laboratory study on new particle formation from the reaction OH + SO 2 : influence of experimental conditions, H 2 O vapour, NH 3 and the amine tert-butylamine on the overall process , 2010 .

[24]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[25]  M. Kulmala,et al.  Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events , 2002 .

[26]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[27]  Hanna Vehkamäki,et al.  Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia , 2008 .

[28]  M. Stolzenburg,et al.  Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter , 2009 .

[29]  D. Hegg,et al.  A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer , 1995 .

[30]  R. Turco,et al.  A new source of tropospheric aerosols: Ion‐ion recombination , 1998 .

[31]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[32]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[33]  F. Arnold,et al.  Multi-ion complexes in the stratosphere—implications for trace gases and aerosol , 1980, Nature.

[34]  A. Hansel,et al.  High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time , 2010, Journal of the American Society for Mass Spectrometry.

[35]  I. Riipinen,et al.  Toward Direct Measurement of Atmospheric Nucleation , 2007, Science.

[36]  K. Brueckner,et al.  Ion—Ion Recombination , 1964 .

[37]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[38]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[39]  M. Webb Clouds in the perturbed climate system: their relationship to energy balance, atmospheric dynamics and precipitation, edited by Jost Heintzenberg and Robert J. Charlson. Strüngmann Forum Reports. MIT Press, May 2009. ISBN 978 0 262 01287 4 , 2010 .

[40]  K. Froyd,et al.  Atmospheric ion‐induced nucleation of sulfuric acid and water , 2004 .

[41]  J. M. Reeves,et al.  Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere , 2003, Science.

[42]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[43]  E. Lovejoy,et al.  A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase , 2007 .

[44]  I. Riipinen,et al.  Evidence for the role of organics in aerosol particle formation under atmospheric conditions , 2010, Proceedings of the National Academy of Sciences.

[45]  F. Arnold,et al.  Gaseous ammonia and ammonium ions in the free troposphere , 1986, Nature.

[46]  Jun Zheng,et al.  Formation of nanoparticles of blue haze enhanced by anthropogenic pollution , 2009, Proceedings of the National Academy of Sciences.