The efficient rotational pressure-correction schemes for the coupling Stokes/Darcy problem

Abstract In this paper, the rotational pressure-correction methods for the Stokes/Darcy system are developed and analyzed. The central advantage of these methods is a time-dependent version of domain decomposition. These methods have first-order/second-order accuracy without the incompressibility constraint of the Stokes/Darcy system. Their main feature is the implementation efficiency in that we only solve one vector-valued elliptic equation and one scalar-valued Poisson equation for the Stokes equations per time step. The unconditional stability and long time stability are established and numerical experiments are also presented to show their performance.

[1]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[2]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[3]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[4]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[5]  A. Quarteroni,et al.  Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations , 2003 .

[6]  Zhangxin Chen,et al.  Optimal $$L^2, H^1$$L2,H1 and $$L^\infty $$L∞ analysis of finite volume methods for the stationary Navier–Stokes equations with large data , 2014, Numerische Mathematik.

[7]  Hoang Tran,et al.  Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems , 2012, J. Comput. Appl. Math..

[8]  I. P. Jones,et al.  Low Reynolds number flow past a porous spherical shell , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Hoang Tran,et al.  Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..

[10]  Ying He and Jie Shen,et al.  Unconditionally Stable Pressure-Correction Schemes for a Linear Fluid-Structure Interaction Problem , 2014 .

[11]  Zhangxin Chen,et al.  A stabilized finite element method based on two local Gauss integrations for a coupled Stokes-Darcy problem , 2016, J. Comput. Appl. Math..

[12]  Xiaoming He,et al.  A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition , 2015, SIAM J. Sci. Comput..

[13]  N. Yan,et al.  A posteriori error estimate for the Stokes–Darcy system , 2011 .

[14]  Jian Li,et al.  Optimal estimates on stabilized finite volume methods for the incompressible Navier–Stokes model in three dimensions , 2018, Numerical Methods for Partial Differential Equations.

[15]  Gabriel N. Gatica,et al.  A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..

[16]  Xiaohong Zhu,et al.  Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..

[17]  Zhangxin Chen Finite Element Methods And Their Applications , 2005 .

[18]  A. Quarteroni,et al.  Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations , 2004 .

[19]  Xiaolin Lin,et al.  A priori and a posteriori estimates of stabilized mixed finite volume methods for the incompressible flow arising in arteriosclerosis , 2020, J. Comput. Appl. Math..

[20]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[21]  Carlo D'Angelo,et al.  Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport * , 2011 .

[22]  Béatrice Rivière,et al.  A strongly conservative finite element method for the coupling of Stokes and Darcy flow , 2010, J. Comput. Phys..

[23]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Bin Jiang A parallel domain decomposition method for coupling of surface and groundwater flows , 2009 .

[26]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[27]  W. Layton,et al.  A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .

[28]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[29]  Wenbin Chen,et al.  Efficient and Long-Time Accurate Second-Order Methods for Stokes-Darcy System , 2012, 1211.0567.

[30]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[31]  H. Rui,et al.  A unified stabilized mixed finite element method for coupling Stokes and Darcy flows , 2009 .

[32]  Jie Shen,et al.  Error Analysis of Pressure-Correction Schemes for the Time-Dependent Stokes Equations with Open Boundary Conditions , 2005, SIAM J. Numer. Anal..

[33]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[34]  Francisco-Javier Sayas,et al.  Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem , 2011 .

[35]  Lassaad Elasmi,et al.  Perturbation solution of the coupled Stokes-Darcy problem , 2011 .

[36]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[37]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[38]  Max Gunzburger,et al.  Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system☆ , 2010 .

[39]  Zhangxin Chen,et al.  A new stabilized finite volume method for the stationary Stokes equations , 2009, Adv. Comput. Math..

[40]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[41]  Shuyu Sun,et al.  Coupling nonlinear Stokes and Darcy flow using mortar finite elements , 2011 .

[42]  Trygve K. Karper,et al.  Unified finite element discretizations of coupled Darcy–Stokes flow , 2009 .

[43]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[44]  Béatrice Rivière,et al.  Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow , 2008, J. Num. Math..

[45]  William J. Layton,et al.  Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..

[46]  Weidong Zhao,et al.  Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .

[47]  Juan Galvis,et al.  Balancing Domain Decomposition Methods for Mortar Coupling Stokes-Darcy Systems , 2007 .

[48]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[49]  Alfio Quarteroni,et al.  Numerical analysis of the Navier–Stokes/Darcy coupling , 2010, Numerische Mathematik.

[50]  Svetlana Tlupova,et al.  Stokes-Darcy boundary integral solutions using preconditioners , 2009, J. Comput. Phys..

[51]  Svetlana Tlupova,et al.  Boundary integral solutions of coupled Stokes and Darcy flows , 2009, J. Comput. Phys..

[52]  Béatrice Rivière,et al.  Primal Discontinuous Galerkin Methods for Time-Dependent Coupled Surface and Subsurface Flow , 2009, J. Sci. Comput..

[53]  B. Rivière,et al.  On the solution of the coupled Navier–Stokes and Darcy equations , 2009 .

[54]  J.-L. GUERMOND,et al.  Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density , 2011, SIAM J. Numer. Anal..

[55]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[56]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[57]  Xiaoming He,et al.  Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.

[58]  Abner J. Salgado,et al.  A splitting method for incompressible flows with variable density based on a pressure Poisson equation , 2009, J. Comput. Phys..

[59]  Zhangxin Chen,et al.  A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations , 2012, Numerische Mathematik.

[60]  Cao Guohua,et al.  Darcy-Stokes Equations with Finite Difference and Natural Boundary Element Coupling Method , 2011 .