Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification

We analyze the convergence of probability density functions utilizing approximate models for both forward and inverse problems. We consider the standard forward uncertainty quantification problem w...

[1]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[2]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[3]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[5]  D. W. Scott,et al.  Variable Kernel Density Estimation , 1992 .

[6]  Nicholas Zabaras,et al.  A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .

[7]  Dennis D. Boos,et al.  A Converse to Scheffe's Theorem , 1985 .

[8]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[9]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[10]  Stephen Roberts,et al.  Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .

[11]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[12]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[13]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[14]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[15]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[16]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[17]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[18]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[19]  Tim Wildey,et al.  Combining Push-Forward Measures and Bayes' Rule to Construct Consistent Solutions to Stochastic Inverse Problems , 2018, SIAM J. Sci. Comput..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Tim Wildey,et al.  A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods , 2012, SIAM J. Matrix Anal. Appl..

[22]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[23]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[24]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[25]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[26]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[27]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[28]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[29]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[30]  Mary F. Wheeler,et al.  Stochastic collocation and mixed finite elements for flow in porous media , 2008 .

[31]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[32]  David F. Gleich,et al.  Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..

[33]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[34]  Br Uce E. Ha,et al.  UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA , 2008 .

[35]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[36]  N. Wiener The Homogeneous Chaos , 1938 .

[37]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[38]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[39]  Tim Wildey,et al.  Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.

[40]  Robert Schaback,et al.  Interpolation of spatial data – A stochastic or a deterministic problem? , 2013, European Journal of Applied Mathematics.

[41]  George E. Karniadakis,et al.  Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..

[42]  Tim Wildey,et al.  Propagation of Uncertainties Using Improved Surrogate Models , 2012, SIAM/ASA J. Uncertain. Quantification.

[43]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[44]  Trevor J. Sweeting,et al.  On a Converse to Scheffe's Theorem , 1986 .

[45]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[46]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[47]  Mary F. Wheeler,et al.  A multiscale preconditioner for stochastic mortar mixed finite elements , 2011 .

[48]  G. Burton Sobolev Spaces , 2013 .

[49]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[50]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[51]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[52]  John D. Jakeman,et al.  Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates , 2014, J. Comput. Phys..