Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification
暂无分享,去创建一个
[1] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[2] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[3] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[4] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[5] D. W. Scott,et al. Variable Kernel Density Estimation , 1992 .
[6] Nicholas Zabaras,et al. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .
[7] Dennis D. Boos,et al. A Converse to Scheffe's Theorem , 1985 .
[8] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[9] C. Robert. The Bayesian choice : a decision-theoretic motivation , 1996 .
[10] Stephen Roberts,et al. Local and Dimension Adaptive Stochastic Collocation for Uncertainty Quantification , 2012 .
[11] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[12] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[13] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[14] E. Somersalo,et al. Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .
[15] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[16] P. Meyer,et al. Probabilities and potential C , 1978 .
[17] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[18] Dongxiao Zhang,et al. An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .
[19] Tim Wildey,et al. Combining Push-Forward Measures and Bayes' Rule to Construct Consistent Solutions to Stochastic Inverse Problems , 2018, SIAM J. Sci. Comput..
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] Tim Wildey,et al. A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods , 2012, SIAM J. Matrix Anal. Appl..
[22] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[23] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[24] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[25] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[26] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[27] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[28] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[29] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[30] Mary F. Wheeler,et al. Stochastic collocation and mixed finite elements for flow in porous media , 2008 .
[31] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[32] David F. Gleich,et al. Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..
[33] James O. Berger,et al. An overview of robust Bayesian analysis , 1994 .
[34] Br Uce E. Ha,et al. UNIFORM CONVERGENCE RATES FOR KERNEL ESTIMATION WITH DEPENDENT DATA , 2008 .
[35] A. O'Hagan,et al. Bayesian calibration of computer models , 2001 .
[36] N. Wiener. The Homogeneous Chaos , 1938 .
[37] R. Baierlein. Probability Theory: The Logic of Science , 2004 .
[38] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[39] Tim Wildey,et al. Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty , 2015, SIAM/ASA J. Uncertain. Quantification.
[40] Robert Schaback,et al. Interpolation of spatial data – A stochastic or a deterministic problem? , 2013, European Journal of Applied Mathematics.
[41] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[42] Tim Wildey,et al. Propagation of Uncertainties Using Improved Surrogate Models , 2012, SIAM/ASA J. Uncertain. Quantification.
[43] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[44] Trevor J. Sweeting,et al. On a Converse to Scheffe's Theorem , 1986 .
[45] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[46] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[47] Mary F. Wheeler,et al. A multiscale preconditioner for stochastic mortar mixed finite elements , 2011 .
[48] G. Burton. Sobolev Spaces , 2013 .
[49] Dongbin Xiu,et al. Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..
[50] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[51] Claes Johnson,et al. Computational Differential Equations , 1996 .
[52] John D. Jakeman,et al. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates , 2014, J. Comput. Phys..