Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes
暂无分享,去创建一个
[1] Paul Cull,et al. The Möbius Cubes , 1995, IEEE Trans. Computers.
[2] Carsten Thomassen,et al. Edge-disjoint Hamiltonian cycles in hypertournaments , 2006, J. Graph Theory.
[3] Hui Yang,et al. A fast diagnosis algorithm for locally twisted cube multiprocessor systems under the MM* model , 2007, Comput. Math. Appl..
[4] Sun-Yuan Hsieh,et al. Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.
[5] Jun-Ming Xu,et al. Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..
[6] Sun-Yuan Hsieh,et al. Constructing edge-disjoint spanning trees in locally twisted cubes , 2009, Theor. Comput. Sci..
[7] R. Rowley,et al. Edge-Disjoint Hamiltonian Cycles in de Bruijn Networks , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.
[8] Ran Libeskind-Hadas,et al. On Edge-Disjoint Spanning Trees in Hypercubes , 1999, Inf. Process. Lett..
[9] Myung M. Bae,et al. Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes , 2003, IEEE Trans. Computers.
[10] Sun-Yuan Hsieh,et al. Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges , 2006, IEEE Transactions on Computers.
[11] Michael J. Flynn,et al. Parallel architectures , 1996, CSUR.
[12] Chiun-Chieh Hsu,et al. Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes , 2010, Inf. Process. Lett..
[13] Lih-Hsing Hsu,et al. On embedding cycles into faulty twisted cubes , 2006, Inf. Sci..
[14] M. H. Schultz,et al. Topological properties of hypercubes , 1988, IEEE Trans. Computers.
[15] David J. Evans,et al. Locally twisted cubes are 4-pancyclic , 2004, Appl. Math. Lett..
[16] Xiaohua Jia,et al. Embedding of Cycles in Twisted Cubes with Edge-Pancyclic , 2008, Algorithmica.
[17] Sun-Yuan Hsieh,et al. Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults , 2010, J. Comb. Optim..
[18] Jun-Ming Xu,et al. Weakly Edge-Pancyclicity of Locally Twisted Cubes , 2008, Ars Comb..
[19] Dharma P. Agrawal,et al. Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.
[20] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[21] Jimmy J. M. Tan,et al. Fault-Tolerant Hamiltonicity of Twisted Cubes , 2002, J. Parallel Distributed Comput..
[22] Jung-Sheng Fu. Fault-free Hamiltonian cycles in twisted cubes with conditional link faults , 2008, Theor. Comput. Sci..
[23] Sun-Yuan Hsieh,et al. Pancyclicity of Restricted Hypercube-Like Networks under the Conditional Fault Model , 2010, SIAM J. Discret. Math..
[24] Sun-Yuan Hsieh,et al. Conditional edge-fault Hamiltonicity of augmented cubes , 2010, Inf. Sci..
[25] Ming-Chien Yang. Edge-fault-tolerant node-pancyclicity of twisted cubes , 2009, Inf. Process. Lett..
[26] David J. Evans,et al. The locally twisted cubes , 2005, Int. J. Comput. Math..
[27] Ronald L. Rivest,et al. Introduction to Algorithms, third edition , 2009 .
[28] Kang G. Shin,et al. Interleaved All-to-All Reliable Broadcast on Meshes and Hypercubes , 1994, IEEE Trans. Parallel Distributed Syst..
[29] Gen-Huey Chen,et al. Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..
[30] Peter A. J. Hilbers,et al. The Twisted Cube , 1987, PARLE.
[31] Kemal Efe,et al. The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..