Embedding two edge-disjoint Hamiltonian cycles into locally twisted cubes

The n-dimensional hypercube network Q"n is one of the most popular interconnection networks since it has simple structure and is easy to implement. The n-dimensional locally twisted cube LTQ"n, an important variation of the hypercube, has the same number of nodes and the same number of connections per node as Q"n. One advantage of LTQ"n is that the diameter is only about half of the diameter of Q"n. Recently, some interesting properties of LTQ"n have been investigated in the literature. The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the interconnection network. The existence of two edge-disjoint Hamiltonian cycles in locally twisted cubes has remained unknown. In this paper, we prove that the locally twisted cube LTQ"n with n>=4 contains two edge-disjoint Hamiltonian cycles. Based on the proof of existence, we further provide an O(n2^n)-linear time algorithm to construct two edge-disjoint Hamiltonian cycles in an n-dimensional locally twisted cube LTQ"n with n>=4, where LTQ"n contains 2^n nodes and n2^n^-^1 edges.

[1]  Paul Cull,et al.  The Möbius Cubes , 1995, IEEE Trans. Computers.

[2]  Carsten Thomassen,et al.  Edge-disjoint Hamiltonian cycles in hypertournaments , 2006, J. Graph Theory.

[3]  Hui Yang,et al.  A fast diagnosis algorithm for locally twisted cube multiprocessor systems under the MM* model , 2007, Comput. Math. Appl..

[4]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[5]  Jun-Ming Xu,et al.  Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..

[6]  Sun-Yuan Hsieh,et al.  Constructing edge-disjoint spanning trees in locally twisted cubes , 2009, Theor. Comput. Sci..

[7]  R. Rowley,et al.  Edge-Disjoint Hamiltonian Cycles in de Bruijn Networks , 1991, The Sixth Distributed Memory Computing Conference, 1991. Proceedings.

[8]  Ran Libeskind-Hadas,et al.  On Edge-Disjoint Spanning Trees in Hypercubes , 1999, Inf. Process. Lett..

[9]  Myung M. Bae,et al.  Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes , 2003, IEEE Trans. Computers.

[10]  Sun-Yuan Hsieh,et al.  Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges , 2006, IEEE Transactions on Computers.

[11]  Michael J. Flynn,et al.  Parallel architectures , 1996, CSUR.

[12]  Chiun-Chieh Hsu,et al.  Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes , 2010, Inf. Process. Lett..

[13]  Lih-Hsing Hsu,et al.  On embedding cycles into faulty twisted cubes , 2006, Inf. Sci..

[14]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[15]  David J. Evans,et al.  Locally twisted cubes are 4-pancyclic , 2004, Appl. Math. Lett..

[16]  Xiaohua Jia,et al.  Embedding of Cycles in Twisted Cubes with Edge-Pancyclic , 2008, Algorithmica.

[17]  Sun-Yuan Hsieh,et al.  Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults , 2010, J. Comb. Optim..

[18]  Jun-Ming Xu,et al.  Weakly Edge-Pancyclicity of Locally Twisted Cubes , 2008, Ars Comb..

[19]  Dharma P. Agrawal,et al.  Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Jimmy J. M. Tan,et al.  Fault-Tolerant Hamiltonicity of Twisted Cubes , 2002, J. Parallel Distributed Comput..

[22]  Jung-Sheng Fu Fault-free Hamiltonian cycles in twisted cubes with conditional link faults , 2008, Theor. Comput. Sci..

[23]  Sun-Yuan Hsieh,et al.  Pancyclicity of Restricted Hypercube-Like Networks under the Conditional Fault Model , 2010, SIAM J. Discret. Math..

[24]  Sun-Yuan Hsieh,et al.  Conditional edge-fault Hamiltonicity of augmented cubes , 2010, Inf. Sci..

[25]  Ming-Chien Yang Edge-fault-tolerant node-pancyclicity of twisted cubes , 2009, Inf. Process. Lett..

[26]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[27]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[28]  Kang G. Shin,et al.  Interleaved All-to-All Reliable Broadcast on Meshes and Hypercubes , 1994, IEEE Trans. Parallel Distributed Syst..

[29]  Gen-Huey Chen,et al.  Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..

[30]  Peter A. J. Hilbers,et al.  The Twisted Cube , 1987, PARLE.

[31]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..