First-passage percolation, network flows and electrical resistances

SummaryWe show that the first-passage times of first-passage percolation on ℤ2 are such that P(θ0nn(μ+ɛ)) decay geometrically as n→∞, where θ may represent any of the four usual first-passage-time processes. The former estimate requires no moment condition on the time coordinates, but there exists a geometrically-decaying estimate for the latter quantity if and only if the time coordinate distribution has finite moment generating function near the origin. Here, μ is the time constant and ɛ>0. We study the line-to-line first-passage times and describe applications to the maximum network flow through a randomly-capacitated subsection of ℤ2, and to the asymptotic behaviour of the electrical resistance of a subsection of ℤ2 when the edges of the subsection are wires in an electrical network with random resistances. In the latter case we show, for example, that if each edge-resistance equals 1 or ∞ ohms with probabilities p and 1−p respectively, then the effective resistance Rn across opposite faces of an n by n box satisfies the following:(a)if p<1/2 then P(Rn=∞)→1 as n→∞,(b)if p>1/2 then there exists ν(p)<∞ such that % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0Jd9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI% cacaWGWbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGafyizImQba0ba% daWfqaqaaiGacYgacaGGPbGaaiyBaiGacMgacaGGUbGaaiOzaiaadk% fadaWgaaWcbaGaamOBaaqabaaabaGaamOBaiabgkziUkabg6HiLcqa% baGccuGHKjYOgaqhamaaxababaGaciiBaiaacMgacaGGTbGaci4Cai% aacwhacaGGWbGaamOuamaaBaaaleaacaWGUbaabeaaaeaacaWGUbGa% eyOKH4QaeyOhIukabeaakiqbgsMiJAaaDaGaamODaiaacIcacaWGWb% GaaiykaiaacMcacqGH9aqpcaaIXaaaaa!5DC6! $$P(p^{ - 1} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } \mathop {\lim \inf R_n }\limits_{n \to \infty } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } \mathop {\lim \sup R_n }\limits_{n \to \infty } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } v(p)) = 1$$ . There are some corresponding results for certain other two-dimensional lattices, and for higher dimensions.

[1]  J. Straley Critical exponents for the conductivity of random resistor lattices , 1977 .

[2]  Harry Kesten,et al.  On the time constant and path length of first-passage percolation , 1980, Advances in Applied Probability.

[3]  S. Kirkpatrick Models of Disordered Materials , 1983 .

[4]  Critical sponge dimensions in percolation theory , 1981, Advances in Applied Probability.

[5]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[6]  J. T. Cox,et al.  Some Limit Theorems for Percolation Processes with Necessary and Sufficient Conditions , 1981 .

[7]  D. Stauffer Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.

[8]  G. Grimmett,et al.  Flow in networks with random capacities , 1982 .

[9]  R. Smythe,et al.  First-passage percolation on the square lattice. I , 1977, Advances in Applied Probability.

[10]  H. Kesten Percolation theory for mathematicians , 1982 .

[11]  George Papanicolaou,et al.  Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .

[12]  Rolf Künnemann,et al.  The diffusion limit for reversible jump processes onZd with ergodic random bond conductivities , 1983 .

[13]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[14]  J. Hammersley,et al.  First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory , 1965 .

[15]  On the continuity of the time constant of first-passage percolation , 1981 .