Vernier acuity during image rotation and translation: Visual performance limits

Our capacity to detect spatial misalignments a fraction of the distance between retinal receptors in the presence of image motion challenges our understanding of spatial vision. We find that vernier acuity, while robust to image translation, rapidly degrades during image rotation. This indicates that orientation is a critical cue utilized by the visual system in vernier acuity tasks. Moreover, vernier acuity is robust to translational motion only at high target strengths. Vernier acuity for translating 3-dot targets over midrange velocities can be predicted from vernier acuity data derived from static targets of different presentation durations. However, the degradation observed at higher velocities is greater than predicted. The high velocity degradation reveals that performance is limited by a 1 msec asynchrony sensitivity. The moving vernier stimulus appears to constitute an optimal configuration for the visual system to achieve a 1 msec asynchrony sensitivity by making use of an orientation cue.

[1]  J. M. FINDLAY Feature Detectors and Vernier Acuity , 1973, Nature.

[2]  R. J. Watt,et al.  Towards a general theory of the visual acuities for shape and spatial arrangement , 1984, Vision Research.

[3]  K. Oatley,et al.  Vernier acuity as affected by target length and separation , 1972 .

[4]  M. Cynader,et al.  Vernier acuities of neurons in area 17 of cat visual cortex: Their relation to stimulus length and velocity, orientation selectivity, and receptive-field structure , 1989, Visual Neuroscience.

[5]  G. Westheimer Diffraction Theory and Visual Hyperacuity* , 1976, American journal of optometry and physiological optics.

[6]  S P McKee,et al.  Interference with line-orientation sensitivity. , 1976, Journal of the Optical Society of America.

[7]  David C. Van Essen,et al.  Reference frames and dynamic remapping processes in vision , 1993 .

[8]  D. Burr Motion smear , 1980, Nature.

[9]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[10]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[12]  S. Klein,et al.  Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[13]  G H Jacobs,et al.  Behavioral and electrophysiological sensitivity to temporally modulated visual stimuli in the ground squirrel , 1991, Visual Neuroscience.

[14]  D. Burr Temporal summation of moving images by the human visual system , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  S. McKee,et al.  Visual acuity in the presence of retinal-image motion. , 1975, Journal of the Optical Society of America.

[16]  David C. Burr,et al.  Orientation discrimination depends on spatial frequency , 1991, Vision Research.

[17]  Suzanne P. McKee,et al.  Colliding targets: Evidence for spatial localization within the motion system , 1985, Vision Research.

[18]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[19]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[20]  S. Klein,et al.  Position sense of the peripheral retina. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[21]  C. Baker,et al.  Spatial receptive-field properties of direction-selective neurons in cat striate cortex. , 1986, Journal of neurophysiology.

[22]  D. Rose Mechanisms underlying the receptive field properties of neurons in cat visual cortex , 1979, Vision Research.

[23]  R. J. Watt,et al.  The use of different cues in vernier acuity , 1983, Vision Research.

[24]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[25]  Thom Carney,et al.  Can sinusoidal vernier acuity be predicted by contrast discrimination? , 1993, Vision Research.

[26]  Suzanne P. McKee,et al.  Integration regions for visual hyperacuity , 1977, Vision Research.

[27]  D. Burr Acuity for apparent vernier offset , 1979, Vision Research.

[28]  Suzanne P. McKee,et al.  Perception of temporal order in adjacent visual stimuli , 1977, Vision Research.

[29]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[30]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Levi,et al.  Orientation, masking, and vernier acuity for line targets , 1993, Vision Research.

[32]  G. Henry,et al.  The nature and origin of orientation specificity in neurons of the visual pathways , 1994, Progress in Neurobiology.

[33]  D. Williams,et al.  Cone spacing and the visual resolution limit. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[34]  S. McKee,et al.  Exposure duration affects the sensitivity of vernier acuity to target motion , 1983, Vision Research.

[35]  Thom Carney,et al.  Orientation discrimination as a function of stimulus eccentricity and size: Nasal/temporal retinal asymmetry , 1988, Vision Research.

[36]  M J Morgan,et al.  Vernier acuity predicted from changes in the light distribution of the retinal image. , 1985, Spatial vision.

[37]  Thom Carney,et al.  Cortical processing of hyperacuity tasks , 1989, Vision Research.

[38]  R. J. Watt,et al.  On the failure of spatiotemporal interpolation: A filtering model , 1983, Vision Research.

[39]  O. Braddick Visual hyperacuity. , 1984, Nature.

[40]  A Bradley,et al.  Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[41]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[42]  B. Skottun,et al.  Effects of contrast and spatial frequency on vernier acuity , 1987, Vision Research.

[43]  M. Cynader,et al.  Vernier acuity of neurones in cat visual cortex , 1986, Nature.

[44]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  G Stigmar,et al.  BLURRED VISUAL STIMULI , 1971 .

[46]  J M Enoch,et al.  The resistance of selected hyperacuity configurations to retinal image degradation. , 1984, Investigative ophthalmology & visual science.

[47]  V. Dobson,et al.  Neuronal Circuits Capable of Generating Visual Cortex Simple-Cell Stimulus Preferences , 1980, Perception.

[48]  A. Z. Meiri,et al.  The effects of exposure duration and luminance on the 3-dot hyperacuity task , 1984, Vision Research.

[49]  R. B. Pinter,et al.  Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks , 1992 .

[50]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[51]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.