Excited state structures and vibronic spectra of H2CO+, HDCO+, and D2CO+ using molecular gradient and Hessian techniques

We choose H2CO+ and its deuterated species to demonstrate the potential for using second‐order multiconfigurational self‐consistent field theory to optimize structures and calculate properties of ionized and excited states. We focus on the calculation of multidimensional vibronic spectra using only the local information of the potential hypersurface, viz. the molecular energy, gradient, and Hessian. Second‐order multiconfigurational self‐consistent field optimization on lowest excited states using the trust radius algorithm is found to give the same stable convergence as for neutral ground states, while for higher lying states, the problem of multidimensional potential crossings renders the calculations more difficult.

[1]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[2]  T. Takeuchi,et al.  Nonadiabatic unimolecular reactions. 4. Isolated state decay in the fragmentation of the formaldehyde cation , 1990 .

[3]  gren,et al.  Vibronic emission from short-lived core-hole states: Theory and applications for the water molecule. , 1989, Physical review. A, General physics.

[4]  K. Houk,et al.  Influence of basis sets and electron correlation on theoretically predicted infrared intensities , 1989 .

[5]  D. Holland A Photoelectron spectroscopy study of the four outermost valence orbitals of formaldehyde , 1989 .

[6]  David H. Magers,et al.  Correlated studies of infrared intensities , 1989 .

[7]  Jeppe Olsen,et al.  Linear response calculations for large scale multiconfiguration self‐consistent field wave functions , 1988 .

[8]  W. C. Ermler,et al.  Ab initio vibrational transition dipole moments and intensities of formaldehyde , 1988 .

[9]  R. Fletcher Practical Methods of Optimization , 1988 .

[10]  Trygve Helgaker,et al.  Ground-state potential energy surface of diazene , 1987 .

[11]  Trygve Helgaker,et al.  Systematic determination of MCSCF equilibrium and transition structures and reaction paths , 1986 .

[12]  Trygve Helgaker,et al.  Molecular Hessians for large‐scale MCSCF wave functions , 1986 .

[13]  Trygve Helgaker,et al.  Analytical calculation of MCSCF dipole‐moment derivatives , 1986 .

[14]  Hans Ågren,et al.  A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations , 1986 .

[15]  H. Schaefer,et al.  Analytic evaluation and basis set dependence of intensities of infrared spectra , 1986 .

[16]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[17]  M. Page,et al.  Multireference CI Gradients and MCSCF Second Derivatives. , 1984 .

[18]  H. Schaefer,et al.  Analytic energy second derivatives for general MCSCF wave functions , 1984 .

[19]  J. Simons,et al.  Ab initio analytical molecular gradients and Hessians , 1983 .

[20]  Peter Pulay,et al.  Second and third derivatives of variational energy expressions: Application to multiconfigurational self‐consistent field wave functions , 1983 .

[21]  S. Kondo,et al.  Infrared band intensities of formaldehyde and formaldehyde‐d2 , 1982 .

[22]  W. Niessen,et al.  30.4-nm He (II) photoelectron spectra of organic molecules: Part III. Oxo-compounds (C, H, O)☆ , 1980 .

[23]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[24]  Keiji Morokuma,et al.  Energy gradient in a multi-configurational SCF formalism and its application to geometry optimization of trimethylene diradicals , 1979 .

[25]  D. W. Turner,et al.  A Discussion on photoelectron spectroscopy - Molecular photoelectron spectroscopy , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[26]  J. Muenter,et al.  Molecular beam electric resonance study of formaldehyde, thioformaldehyde, and ketene , 1977 .

[27]  Henry F. Schaefer,et al.  Applications of electronic structure theory , 1977 .

[28]  L. Cederbaum,et al.  A many‐body approach to the vibrational structure in molecular electronic spectra. II. Application to nitrogen, carbon monoxide, and formaldehyde , 1976 .

[29]  L. Cederbaum,et al.  A many‐body approach to the vibrational structure in molecular electronic spectra. I. Theory , 1976 .

[30]  L. Cederbaum,et al.  On the controversial assignment of the ionization potentials of formaldehyde , 1975 .

[31]  P. Pulay,et al.  Hartree-Fock calculation of the harmonic force constants and equilibrium geometry of formaldehyde , 1974 .

[32]  L. Cederbaum,et al.  On the vibrational structure in photoelectron spectra by the method of Green's functions , 1974 .

[33]  Per E. M. Siegbahn,et al.  Polarization functions for first and second row atoms in Gaussian type MO-SCF calculations , 1970 .

[34]  T. Shimanouchi,et al.  METHOD OF ADJUSTING FORCE CONSTANTS AND ITS APPLICATION TO H$sub 2$O, H$sub 2$CO, CH$sub 2$Cl, CH$sub 2$Cl$sub 2$ AND THEIR DEUTERATED MOLECULES , 1965 .

[35]  T. E. Sharp,et al.  Franck—Condon Factors for Polyatomic Molecules , 1964 .

[36]  G. Herzberg Infrared and raman spectra , 1964 .

[37]  Enrico Clementi,et al.  Modern Techniques in Computational Chemistry: MOTECC™ -89 , 1899 .