GnpIS: an information system to integrate genetic and genomic data from plants and fungi

Data integration is a key challenge for modern bioinformatics. It aims to provide biologists with tools to explore relevant data produced by different studies. Large-scale international projects can generate lots of heterogeneous and unrelated data. The challenge is to integrate this information with other publicly available data. Nucleotide sequencing throughput has been improved with new technologies; this increases the need for powerful information systems able to store, manage and explore data. GnpIS is a multispecies integrative information system dedicated to plant and fungi pests. It bridges genetic and genomic data, allowing researchers access to both genetic information (e.g. genetic maps, quantitative trait loci, markers, single nucleotide polymorphisms, germplasms and genotypes) and genomic data (e.g. genomic sequences, physical maps, genome annotation and expression data) for species of agronomical interest. GnpIS is used by both large international projects and plant science departments at the French National Institute for Agricultural Research. Here, we illustrate its use. Database URL: http://urgi.versailles.inra.fr/gnpis

[1]  Lincoln Stein,et al.  CMap 1.01: a comparative mapping application for the Internet , 2009, Bioinform..

[2]  Pierre Sourdille,et al.  A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B , 2008, Science.

[3]  Chittaranjan Kole,et al.  Genetics, genomics and breeding of grapes , 2011 .

[4]  Edward S. Buckler,et al.  Gramene database in 2010: updates and extensions , 2010, Nucleic Acids Res..

[5]  Emmanuel Barillot,et al.  GénoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics , 2003, Nucleic Acids Res..

[6]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[7]  Manuel Ruiz,et al.  TropGENE-DB, a multi-tropical crop information system , 2004, Nucleic Acids Res..

[8]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[9]  Matthew D. Wilkerson,et al.  PlantGDB: a resource for comparative plant genomics , 2007, Nucleic Acids Res..

[10]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[11]  Junjun Zhang,et al.  BioMart: a data federation framework for large collaborative projects , 2011, Database J. Biol. Databases Curation.

[12]  J. Stajich,et al.  Using the Generic Synteny Browser (GBrowse_syn) , 2010, Current protocols in bioinformatics.

[13]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[14]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[15]  P. Argos,et al.  SRS: information retrieval system for molecular biology data banks. , 1996, Methods in enzymology.

[16]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[17]  Michela Troggio,et al.  Genome sequence initiatives , 2011 .

[18]  Liya Ren,et al.  Gramene QTL database: development, content and applications , 2009, Database J. Biol. Databases Curation.

[19]  Jim Thurmond,et al.  FlyBase 101 – the basics of navigating FlyBase , 2011, Nucleic Acids Res..

[20]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[21]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[22]  Pierre Tufféry,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .

[23]  Chris Mungall,et al.  A Chado case study: an ontology-based modular schema for representing genome-associated biological information , 2007, ISMB/ECCB.

[24]  Jean,et al.  Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations , 2011, Nature communications.

[25]  Maureen J Donlin,et al.  Using the Generic Genome Browser (GBrowse) , 2007, Current protocols in bioinformatics.

[26]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[27]  Anton Nekrutenko,et al.  Integrating diverse databases into an unified analysis framework: a Galaxy approach , 2011, Database J. Biol. Databases Curation.

[28]  Qunfeng Dong,et al.  MaizeGDB, the community database for maize genetics and genomics , 2004, Nucleic Acids Res..

[29]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[30]  R. Drysdale FlyBase : a database for the Drosophila research community. , 2008, Methods in molecular biology.

[31]  Bernard Henrissat,et al.  Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea , 2011, PLoS genetics.

[32]  Li Yang,et al.  MIPSPlantsDB—plant database resource for integrative and comparative plant genome research , 2007, Nucleic Acids Res..