Genetic algorithm optimization of phononic bandgap structures

Abstract This paper describes the use of genetic algorithms (GAs) for the optimal design of phononic bandgaps in periodic elastic two-phase media. In particular, we link a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal–matrix composite systems consisting of Ti/SiC, and H 2 O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here implies that, for simplicity, only dilatational wave propagation is considered, although this is not an essential limitation of the method. The inclusion material is found to have a lower longitudinal modulus (and lower wave speed) than the surrounding matrix material, a result consistent with observations that stronger scattering is observed if the inclusion material has a lower wave velocity than the matrix material.

[1]  Shmuel Vigdergauz,et al.  Two-dimensional grained composites of minimum stress concentration , 1997 .

[2]  M. Torres,et al.  ULTRASONIC BAND GAP IN A PERIODIC TWO-DIMENSIONAL COMPOSITE , 1998 .

[3]  P. Gardonio,et al.  A wave model for rigid-frame porous materials using lumped parameter concepts , 2005 .

[4]  Herbert A. Mang,et al.  The Fifth World Congress on Computational Mechanics , 2002 .

[5]  B. K. Henderson,et al.  Experimental investigation of acoustic band structures in tetragonal periodic particulate composite structures , 2001 .

[6]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[7]  Fugen Wu,et al.  Large two-dimensional band gaps in three-component phononic crystals , 2003 .

[8]  D. M. Mead,et al.  WAVE PROPAGATION IN CONTINUOUS PERIODIC STRUCTURES: RESEARCH CONTRIBUTIONS FROM SOUTHAMPTON, 1964–1995 , 1996 .

[9]  J. Berryman,et al.  Dispersion in poroelastic systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  H. Saunders Book Reviews : The Finite Element Method (Revised): O.C. Zienkiewicz McGraw-Hill Book Co., New York, New York , 1980 .

[11]  P. Kuchment,et al.  An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials , 1999 .

[12]  T. Birks,et al.  Acoustic stop-bands in periodically microtapered optical fibers , 2000 .

[13]  Franck Sgard,et al.  On the use of perforations to improve the sound absorption of porous materials , 2005 .

[14]  P A Deymier,et al.  Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. , 2001, Physical review letters.

[15]  S. Tamura,et al.  Band structures of acoustic waves in phononic lattices , 2002 .

[16]  Eleftherios N. Economou,et al.  Multiple-scattering theory for three-dimensional periodic acoustic composites , 1999 .

[17]  P. Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[18]  T. Plona,et al.  Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies , 1980 .

[19]  R. Collin Field theory of guided waves , 1960 .

[20]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[21]  A. Fernández-Nieves,et al.  Structure formation from mesoscopic soft particles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Torquato,et al.  Optimal design of manufacturable three-dimensional composites with multifunctional characteristics , 2003 .

[23]  Wei H. Yang,et al.  On Waves in Composite Materials with Periodic Structure , 1973 .

[24]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[25]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[26]  P. Yu,et al.  Complex elastic wave band structures in three-dimensional periodic elastic media , 1998 .

[27]  Analysis of wave propagation in saturated porous media. I. Theoretical solution , 2002 .

[28]  K. Graff Wave Motion in Elastic Solids , 1975 .

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  Characteristic analysis of wave propagation in anisotropic fluid-saturated porous media , 2005 .

[31]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[33]  Mihail M. Sigalas,et al.  Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method , 2000 .

[34]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[37]  T. Miyashita,et al.  EXPERIMENTAL FULL BAND-GAP OF A SONIC-CRYSTAL SLAB MADE OF A 2D LATTICE OF ALUMINUM RODS IN AIR , 2003 .

[38]  Walter Kohn,et al.  Variational Methods for Dispersion Relations and Elastic Properties of Composite Materials , 1972 .

[39]  Robert V. Kohn,et al.  Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. , 1994 .

[40]  K. Rajagopal,et al.  On the propagation of waves through porous solids , 2005 .

[41]  Yury Grabovsky,et al.  The cavity of the optimal shape under the shear stresses , 1998 .

[42]  Eleftherios N. Economou,et al.  Elastic waves in plates with periodically placed inclusions , 1994 .

[43]  A. Modinos,et al.  Scattering of elastic waves by periodic arrays of spherical bodies , 2000 .

[44]  Ole Sigmund,et al.  Phononic Band Gap Structures as Optimal Designs , 2003 .

[45]  M. Kushwaha,et al.  CLASSICAL BAND STRUCTURE OF PERIODIC ELASTIC COMPOSITES , 1996 .

[46]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[47]  C. Jianchun,et al.  Experimental and Theoretical Evidence for the Existence of Broad Forbidden Gaps in the Three-Component Composite , 2003 .

[48]  Fugen Wu,et al.  Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites , 2003 .

[49]  Z. Hou,et al.  Acoustic wave in a two-dimensional composite medium with anisotropic inclusions , 2003 .

[50]  Spatial trapping of acoustic waves in bubbly liquids , 2001 .

[51]  Yukihiro Tanaka,et al.  Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch , 2000 .

[52]  S. Meguid,et al.  On the local elastic -plastic behaviour of the interface in titanium/silicon carbide composites , 2002 .

[53]  M. V. Malyshev,et al.  LASERS, OPTICS, AND OPTOELECTRONICS ÑPACS 42Ö 1593 Essential role of impedance in the formation of acoustic band gaps , 2000 .

[54]  J. Z. Zhu,et al.  The finite element method , 1977 .

[55]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[56]  Fugen Wu,et al.  Elastic wave band gaps for three-dimensional phononic crystals with two structural units , 2003 .

[57]  Eric Michielssen,et al.  Genetic algorithm optimization applied to electromagnetics: a review , 1997 .

[58]  Miguel Holgado,et al.  Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal , 1999 .

[59]  Economou,et al.  Classical wave propagation in periodic structures: Cermet versus network topology. , 1993, Physical review. B, Condensed matter.

[60]  Robert V. Kohn,et al.  Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. , 1995 .