Web-Age Information Management

Users’ interaction and collaboration on Web 2.0 via social bookmarking applications have resulted in creating a new structure of user-generated data, denoted folksonomies, where users, Web resources and tags generated by users are linked together. Some of those applications focus on geographic maps. They allow users to create and annotate geographic places and as such generate geo-folksonomies with geographically referenced resources. Geo-folksonomies suffer from redundancy problem, where users create and tag multiple place resources that reference the same geographic place on the ground. These multiple disjointed references result in fragmented tag collections and limited opportunities for effective analysis and integration of data sets. This paper, (1) defines the quality problem of resources in a geo-folksonomy (2) describes methods for identifying and merging redundant place resources and hence reducing the uncertainty in a geo-folksonomy, and (3) describes the evaluation of the methods proposed on a realistic sample data set. The evaluation results demonstrate the potential value of the approach.

[1]  S. Boag,et al.  XQuery 1.0 : An XML query language, W3C Working Draft 12 November 2003 , 2003 .

[2]  Sam Lightstone,et al.  Physical Database Design: the database professional's guide to exploiting indexes, views, storage, and more , 2007 .

[3]  Tok Wang Ling,et al.  From Region Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern Matching , 2005, VLDB.

[4]  Patrick E. O'Neil,et al.  ORDPATHs: insert-friendly XML node labels , 2004, SIGMOD '04.

[5]  Christos Faloutsos,et al.  The R+-Tree: A Dynamic Index for Multi-Dimensional Objects , 1987, VLDB.

[6]  Chun Zhang,et al.  Storing and querying ordered XML using a relational database system , 2002, SIGMOD '02.

[7]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[8]  Hassan A. Karimi,et al.  ONALIN: Ontology and Algorithm for Indoor Routing , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[9]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[10]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[11]  Ki-Joune Li,et al.  Topology of the Prism Model for 3D Indoor Spatial Objects , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[12]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[13]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[14]  Chen Wang,et al.  Extended XML Tree Pattern Matching: Theories and Algorithms , 2011, IEEE Transactions on Knowledge and Data Engineering.

[15]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[16]  Michal Krátký,et al.  On Support of Ordering in Multidimensional Data Structures , 2010, ADBIS.

[17]  Hyeyoung Kim,et al.  A SDBMS-Based 2D-3D Hybrid Model for Indoor Routing , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[18]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[19]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[20]  Elias Frentzos,et al.  Indexing Objects Moving on Fixed Networks , 2003, SSTD.

[21]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[22]  Jae-Woo Chang,et al.  TMN-tree: New Trajectory Index Structure for Moving Objects in Spatial Networks , 2010, 2010 10th IEEE International Conference on Computer and Information Technology.

[23]  Christos Faloutsos,et al.  Efficient Similarity Search In Sequence Databases , 1993, FODO.

[24]  Hua Lu,et al.  Graph Model Based Indoor Tracking , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[25]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[26]  Dik Lun Lee,et al.  A Lattice-Based Semantic Location Model for Indoor Navigation , 2008, The Ninth International Conference on Mobile Data Management (mdm 2008).

[27]  T. H. Kolbe,et al.  CityGML: Interoperable Access to 3D City Models , 2005 .

[28]  Dik Lun Lee,et al.  A topology-based semantic location model for indoor applications , 2008, GIS '08.

[29]  Beng Chin Ooi,et al.  Indexing the Distance: An Efficient Method to KNN Processing , 2001, VLDB.

[30]  Donald J. Berndt,et al.  Finding Patterns in Time Series: A Dynamic Programming Approach , 1996, Advances in Knowledge Discovery and Data Mining.

[31]  Michal Krátký,et al.  On the efficient indexing of ordered multidimensional tuples , 2010, 2010 International Conference for Internet Technology and Secured Transactions.

[32]  Dimitrios Gunopulos,et al.  Time-series similarity problems and well-separated geometric sets , 1997, SCG '97.

[33]  Vassilis J. Tsotras,et al.  Tree-Pattern Queries on a Lightweight XML Processor , 2005, VLDB.