Target detection in hyperspectral imagery using forward modeling and in-scene information

Abstract This work addresses the problem of detecting and classifying materials and targets in hyperspectral images based on their reflectance spectrum. Accurate target detection in hyperspectral imagery requires a radiative transfer model that maps between the spectral reflectance domain and the measured radiance domain. Such a model can be employed in two ways for detection – using atmospheric compensation, where the measured hyperspectral radiance image is converted to a reflectance image, and using forward modeling, where the target reflectance spectrum is converted to an at-sensor target radiance spectrum. This work presents a forward modeling detection method that utilizes in-scene information to estimate the parameters in the radiative transfer model. Uncertainty in the radiative transfer model and variability of the target spectra are captured using a constrained subspace model for the target. Target detection using library spectra and target rediscovery are evaluated in hyperspectral images of a complex urban scene.

[1]  Sen Jia,et al.  Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[2]  M. Eismann Hyperspectral Remote Sensing , 2012 .

[3]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[4]  D. Roberts,et al.  Comparison of various techniques for calibration of AIS data , 1986 .

[5]  Eyal Ben-Dor,et al.  Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data , 2004 .

[6]  Christopher D. Elvidge,et al.  Comparison of relative radiometric normalization techniques , 1996 .

[7]  Nasser M. Nasrabadi,et al.  Hyperspectral Target Detection : An Overview of Current and Future Challenges , 2014, IEEE Signal Processing Magazine.

[8]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[9]  Steven M. Adler-Golden,et al.  Hyperspectral Detection and Identification with Constrained Target Subspaces , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Glenn Healey,et al.  Physics-based model acquisition and identification in airborne spectral images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[12]  D Slater,et al.  Model acquisition and invariant tracking of unknown materials in hyperspectral images. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Chein-I Chang,et al.  Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[15]  Bo-Cai Gao,et al.  A Review of Atmospheric Correction Techniques for Hyperspectral Remote Sensing of Land Surfaces and Ocean Color , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[16]  M.T. Eismann,et al.  Strategies for hyperspectral target detection in complex background environments , 2006, 2006 IEEE Aerospace Conference.

[17]  Marc A Kolodner Automated target detection system for hyperspectral imaging sensors. , 2008, Applied optics.

[18]  John R. Schott,et al.  Remote Sensing: The Image Chain Approach , 1996 .

[19]  Emmett J. Ientilucci,et al.  Hyperspectral sub-pixel target detection using hybrid algorithms and Physics Based Modeling , 2005 .

[20]  Anthony J. Ratkowski,et al.  The sequential maximum angle convex cone (SMACC) endmember model , 2004, SPIE Defense + Commercial Sensing.

[21]  Diofantos G. Hadjimitsis,et al.  Development of an image based integrated method for determining and mapping aerosol optical thickness (AOT) over urban areas using the darkest pixel atmospheric correction method, RT equation and GIS: A case study of the Limassol area in Cyprus , 2013 .

[22]  M. Griffin,et al.  Compensation of Hyperspectral Data for Atmospheric Effects , 2003 .

[23]  Lawrence S. Bernstein,et al.  A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick atmospheric correction) , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[24]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  John H. Gruninger,et al.  Application of convex cone analysis to hyperspectral and multispectral scenes , 2003, SPIE Remote Sensing.

[26]  John R. Schott,et al.  Target Detection in a Structured Background Environment Using an Infeasibility Metric in an Invariant Space , 2005 .

[27]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[28]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[29]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[30]  Torbjørn Skauli,et al.  A physics-based statistical signature model for hyperspectral target detection , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[31]  P. Teillet,et al.  On the Dark Target Approach to Atmospheric Correction of Remotely Sensed Data , 1995 .

[32]  Chein-I Chang,et al.  Multispectral and hyperspectral image analysis with convex cones , 1999, IEEE Trans. Geosci. Remote. Sens..

[33]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[34]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[35]  Rosamaria Salvatori,et al.  The use of suitable pseudo-invariant targets for MIVIS data calibration by the empirical line method , 2016 .

[36]  Kang Sun,et al.  Clever eye algorithm for target detection of remote sensing imagery , 2016 .

[37]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[38]  Stefania Matteoli,et al.  Operational and Performance Considerations of Radiative-Transfer Modeling in Hyperspectral Target Detection , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Carol J. Bruegge,et al.  Airborne Imaging Spectrometer-2: Radiometric Spectral Characteristics And Comparison Of Ways To Compensate For The Atmosphere , 1987, Optics & Photonics.

[40]  L. S. Bernstein,et al.  In-scene-based atmospheric correction of uncalibrated VISible-SWIR (VIS-SWIR) hyper- and multi-spectral imagery , 2008, Remote Sensing.