Ultracompact Microwatt CMOS Current Readout With Picoampere Noise and Kilohertz Bandwidth for Biosensor Arrays

High-density on-chip electrochemical biosensor arrays are advancing toward a crucial role in health monitoring and development of new medicines and medical treatments. Nanopore and ion channel based sensors especially have great potential but present demanding resolution/speed/power/area requirements on instrumentation circuits. This paper presents a pixel-level current readout circuit and new group-cluster architecture to address the circuit challenges in high-performance biosensor arrays. Fabricated in 0.5 μm CMOS, this electrochemical voltammetry circuit achieves 7.2 pArms noise in an 11.5-kHz bandwidth and only consumes 21-μ W power and 0.06 mm2 area per readout channel. Cyclic voltammetry experiments in a potassium ferricyanide solution and patch-clamp whole-cell experiments were performed to validate the circuit's feasibility for electrochemical biosensor applications.

[1]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Bradley A. Minch,et al.  Design of a CMOS Potentiostat Circuit for Electrochemical Detector Arrays , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[4]  Bernabé Linares-Barranco,et al.  On the design and characterization of femtoampere current-mode circuits , 2003, IEEE J. Solid State Circuits.

[5]  Xiaoyi Mu,et al.  Low Power Multimode Electrochemical Gas Sensor Array System for Wearable Health and Safety Monitoring , 2014, IEEE Sensors Journal.

[6]  W. Staines,et al.  In vivo electrophysiological maturation of neurons derived from a multipotent precursor (embryonal carcinoma) cell line. , 1995, Brain research. Developmental brain research.

[7]  Roman Genov,et al.  CMOS Neurotransmitter Microarray: 96-Channel Integrated Potentiostat With On-Die Microsensors , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[8]  Roman Genov,et al.  Chopper-Stabilized Bidirectional Current Acquisition Circuits for Electrochemical Amperometric Biosensors , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Lin Li,et al.  CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review , 2016, Sensors.

[10]  E Wilkins,et al.  Glucose monitoring: state of the art and future possibilities. , 1996, Medical engineering & physics.

[11]  Andrew J. Mason,et al.  Single ion channel CMOS electrochemical instrument for high throughput recording arrays , 2015, 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).

[12]  K.L. Shepard,et al.  Active CMOS Sensor Array for Electrochemical Biomolecular Detection , 2008, IEEE Journal of Solid-State Circuits.

[13]  Zhou Zhi-ping Noise analysis and characterization of a full differential CMOS interface circuit for capacitive closed-loop micro-accelerometer , 2010 .

[14]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[15]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Areles Molleman,et al.  Patch Clamping: An Introductory Guide To Patch Clamp Electrophysiology , 2002 .

[17]  Petr Skládal,et al.  Advances in electrochemical immunosensors , 1997 .

[18]  Eugenio Culurciello,et al.  An Integrated Patch-Clamp Potentiostat With Electrode Compensation , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[19]  J. Ho,et al.  Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. , 2006, Analytical chemistry.

[20]  Evangelyn C. Alocilja,et al.  Fabrication of a disposable biosensor for Escherichia Coli O157:H7 detection , 2003 .

[21]  Jared Roseman,et al.  Single ion channel recordings with CMOS-anchored lipid membranes. , 2013, Nano letters.

[22]  J.G. Harris,et al.  A time-based VLSI potentiostat for ion current measurements , 2006, IEEE Sensors Journal.

[23]  Erin K Purcell,et al.  BDNF profoundly and specifically increases KCNQ4 expression in neurons derived from embryonic stem cells. , 2013, Stem cell research.

[24]  T. Seese,et al.  Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[25]  M. Trojanowicz,et al.  Miniaturized biochemical sensing devices based on planar bilayer lipid membranes , 2001, Fresenius' journal of analytical chemistry.

[26]  A. Mason,et al.  Lab-on-CMOS integration of microfluidics and electrochemical sensors. , 2013, Lab on a chip.

[27]  A. Hastings The Art of Analog Layout , 2000 .

[28]  Andrew J. Mason,et al.  CMOS Amperometric ADC With High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[29]  Moo Sung Chae,et al.  Design Optimization for Integrated Neural Recording Systems , 2008, IEEE Journal of Solid-State Circuits.

[30]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[31]  Sungjae Ha,et al.  Electric impedance microflow cytometry for characterization of cell disease states. , 2013, Lab on a chip.

[32]  Roman Genov,et al.  16-Channel CMOS Impedance Spectroscopy DNA Analyzer With Dual-Slope Multiplying ADCs , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Marco Tartagni,et al.  Noise Limits of CMOS Current Interfaces for Biosensors: A Review , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[34]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[35]  Lin Li,et al.  High throughput single-ion-channel array microsystem with CMOS instrumentation , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  Mark Schena,et al.  DNA microarrays : a practical approach , 1999 .

[37]  Ysmael Aguilar,et al.  Electrochemical Immunoassay Detection of Bacillus Anthracis Protective Antigen , 2008 .

[38]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[39]  J. Vidal,et al.  Electrochemical affinity biosensors for detection of mycotoxins: A review. , 2013, Biosensors & bioelectronics.

[40]  Ming-Chun Huang,et al.  Rapid electrochemical detection on a mobile phone. , 2013, Lab on a chip.

[41]  Jian Xu,et al.  CMOS Low Current Measurement System for Biomedical Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[42]  Lin Li,et al.  Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[43]  Yoshio Ishimori,et al.  Microfabricated disposable DNA sensor for detection of hepatitis B virus DNA , 1998 .