On fracture analysis using an element overlay technique

In this paper, an element overlay technique (s-FEM [Comput. Struct. 43 (1992) 539]) is applied to various two dimensional linear fracture problems. When s-FEM is adopted, local finite element model concerning cracks can be built independently from the global finite element mesh for modeling overall structure. The local model is superposed on the global one. Therefore, it is tractable to introduce cracks in an existing finite element model. The accuracy of s-FEM is critically examined and it is found that the size of local mesh region needs to be larger than or roughly equal to that of an element in the global mesh.

[1]  Jacob Fish,et al.  THE S-VERSION OF FINITE ELEMENT METHOD FOR LAMINATED COMPOSITES , 1996 .

[2]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[3]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[4]  Jacob Fish,et al.  On adaptive multilevel superposition of finite element meshes for linear elastostatics , 1994 .

[5]  K. Bathe Finite Element Procedures , 1995 .

[6]  Satya N. Atluri,et al.  Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loadings , 1983 .

[7]  Hideomi Ohtsubo,et al.  Mixed analysis of shell and solid elements using the overlaying mesh method , 2003 .

[8]  J. Fish The s-version of the finite element method , 1992 .

[9]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[10]  Satya N. Atluri,et al.  An elastic-plastic finite element alternating method for analyzing wide-spread fatigue damage in aircraft structures , 1995 .

[11]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[12]  J. Z. Zhu,et al.  The finite element method , 1977 .

[13]  H. Okamura,et al.  Linear Fracture Mechanics , 1989 .

[14]  S. K. Maiti Finite element computation of crack closure integrals and stress intensity factors , 1992 .

[15]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[16]  英夫 北川,et al.  有限板中の任意形状き裂の等角写像による解析 : 第1報,解析法の構成とその適用可能性 , 1977 .