Transients in the synchronization of asymmetrically coupled oscillator arrays

Abstract We consider the transient behavior of a large linear array of coupled linear damped harmonic oscillators following perturbation of a single element. Our work is motivated by modeling the behavior of flocks of autonomous vehicles. We first state a number of conjectures that allow us to derive an explicit characterization of the transients, within a certain parameter regime Ω. As corollaries we show that minimizing the transients requires considering non-symmetric coupling, and that within Ω the computed linear growth in N of the transients is independent of (reasonable) boundary conditions.

[1]  J. J. P. Veerman,et al.  Automated Traffic and the Finite Size Resonance , 2009 .

[2]  J. J. P. Veerman,et al.  2 4 O ct 2 01 8 Symmetry and Stability of Homogeneous Flocks A Position Paper , 2021 .

[3]  Dan Martinec,et al.  PDdE-based analysis of vehicular platoons with spatio-temporal decoupling , 2013 .

[4]  J. Hedrick,et al.  String stability of interconnected systems , 1996, IEEE Trans. Autom. Control..

[5]  João Pedro Hespanha,et al.  Mistuning-Based Control Design to Improve Closed-Loop Stability Margin of Vehicular Platoons , 2008, IEEE Transactions on Automatic Control.

[6]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[7]  J. J. P. Veerman,et al.  Asymmetric Decentralized Flocks , 2012, IEEE Transactions on Automatic Control.

[8]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[9]  Gerardo Lafferriere,et al.  Flocks and Formations , 2005 .

[10]  J. K. Hedrick,et al.  Constant Spacing Strategies for Platooning in Automated Highway Systems , 1999 .

[11]  K. Chu Decentralized Control of High-Speed Vehicular Strings , 1974 .

[12]  Peter Seiler,et al.  Mesh stability of look-ahead interconnected systems , 2002, IEEE Trans. Autom. Control..

[13]  D A Paley,et al.  Critical damping in a kinetic interaction network , 2010, Proceedings of the 2010 American Control Conference.

[14]  Petros A. Ioannou,et al.  A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1 , 1994 .

[15]  Robert Herman,et al.  Traffic Dynamics: Analysis of Stability in Car Following , 1959 .

[16]  E. Montroll,et al.  Traffic Dynamics: Studies in Car Following , 1958 .

[17]  S. Darbha,et al.  Information flow and its relation to stability of the motion of vehicles in a rigid formation , 2005, IEEE Transactions on Automatic Control.

[18]  Richard H. Middleton,et al.  String Instability in Classes of Linear Time Invariant Formation Control With Limited Communication Range , 2010, IEEE Transactions on Automatic Control.

[19]  J. J. P. Veerman,et al.  Stability of Large Flocks: an Example , 2010, 1002.0768.

[20]  L. Peppard,et al.  String stability of relative-motion PID vehicle control systems , 1974 .

[21]  David K. Hammond,et al.  Signal velocity in oscillator arrays , 2016 .

[22]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[23]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .