Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a light-activated local treatment modality that is under intensive preclinical and clinical investigations for cancer. To enhance the treatment efficiency of phototherapy and reduce the light-associated side effects, it is highly desirable to improve drug accumulation and precision guided phototherapy for efficient conversion of the absorbed light energy to reactive oxygen species (ROS) and local hyperthermia. In the present study, a programmed assembly strategy was developed for the preparation of human serum albumin (HSA)-indocyanine green (ICG) nanoparticles (HSA-ICG NPs) by intermolecular disulfide conjugations. This study indicated that HSA-ICG NPs had a high accumulation with tumor-to-normal tissue ratio of 36.12±5.12 at 24 h and a long-term retention with more than 7 days in 4T1 tumor-bearing mice, where the tumor and its margin, normal tissue were clearly identified via ICG-based in vivo near-infrared (NIR) fluorescence and photoacoustic dual-modal imaging and spectrum-resolved technology. Meanwhile, HSA-ICG NPs efficiently induced ROS and local hyperthermia simultaneously for synergetic PDT/PTT treatments under a single NIR laser irradiation. After an intravenous injection of HSA-ICG NPs followed by imaging-guided precision phototherapy (808 nm, 0.8 W/cm2 for 5 min), the tumor was completely suppressed, no tumor recurrence and treatments-induced toxicity were observed. The results suggest that HSA-ICG NPs generated by programmed assembly as smart theranostic nanoplatforms are highly potential for imaging-guided cancer phototherapy with PDT/PTT synergistic effects.

[1]  Yongdoo Choi,et al.  Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. , 2011, ACS nano.

[2]  Ping Gong,et al.  Indocyanine Green Nanoparticles for Theranostic Applications , 2013 .

[3]  Zhe Wang,et al.  Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. , 2013, ACS nano.

[4]  R. Jain,et al.  Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated photosensitizer dosing photodynamic therapy. , 2002, Cancer research.

[5]  Zhanwen Xing,et al.  Gold-nanoshelled microcapsules: a theranostic agent for ultrasound contrast imaging and photothermal therapy. , 2011, Angewandte Chemie.

[6]  Gang Liu,et al.  PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual‐Modal CT/Photoacoustic Imaging Guided Photothermal Therapy , 2014, Advanced materials.

[7]  C. Chiang,et al.  Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W(18)O(49) nanowires. , 2013, Angewandte Chemie.

[8]  Guangxia Shen,et al.  Light‐Triggered Theranostics Based on Photosensitizer‐Conjugated Carbon Dots for Simultaneous Enhanced‐Fluorescence Imaging and Photodynamic Therapy , 2012, Advanced materials.

[9]  James H. Adair,et al.  Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. , 2011, ACS nano.

[10]  Jinhui Wu,et al.  Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. , 2013, Molecular pharmaceutics.

[11]  Zhe Wang,et al.  Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer‐Functionalized Gold Nanostars , 2013, Advanced materials.

[12]  龚萍,et al.  Single-Step Assembly of DOX/ICG Loaded Lipid Polymer Nanoparticles for Highly Effective Chemo-photothermal Combination Therapy , 2013 .

[13]  Yifan Ma,et al.  Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. , 2012, Biomaterials.

[14]  Felix Kratz,et al.  Impact of albumin on drug delivery--new applications on the horizon. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[15]  May D. Wang,et al.  Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. , 2010, Analytical chemistry.

[16]  C. Riener,et al.  Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4′-dithiodipyridine , 2002, Analytical and bioanalytical chemistry.

[17]  Ashish A. Pandya,et al.  Rendering protein-based particles transiently insoluble for therapeutic applications. , 2012, Journal of the American Chemical Society.

[18]  Z. Dai,et al.  Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. , 2014, Biomaterials.

[19]  B. Liu,et al.  Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. , 2013, Biomacromolecules.

[20]  Ming-Jium Shieh,et al.  Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. , 2011, ACS nano.

[21]  Yifan Ma,et al.  Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. , 2013, Chemical communications.

[22]  Lihong V. Wang,et al.  Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs , 2012, Science.

[23]  H. Dai,et al.  Tumor Metastasis Inhibition by Imaging‐Guided Photothermal Therapy with Single‐Walled Carbon Nanotubes , 2014, Advanced materials.

[24]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Colyer,et al.  Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[26]  Xiaoyuan Chen,et al.  Dual imaging-guided photothermal/photodynamic therapy using micelles. , 2014, Biomaterials.

[27]  Dong Liang,et al.  A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. , 2010, Journal of the American Chemical Society.

[28]  Xiaoyuan Chen,et al.  Tumor Vasculature Targeted Photodynamic Therapy for Enhanced Delivery of Nanoparticles , 2014, ACS nano.

[29]  Duyang Gao,et al.  Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. , 2014, ACS applied materials & interfaces.

[30]  Z. Dai,et al.  Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. , 2013, Biomaterials.

[31]  Lintao Cai,et al.  Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. , 2014, Biomaterials.

[32]  Rebecca Richards-Kortum,et al.  Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. , 2010, Journal of the American Chemical Society.

[33]  Liang Song,et al.  Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. , 2013, Biomaterials.

[34]  Liangzhu Feng,et al.  Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. , 2011, ACS nano.

[35]  Ruixia Chen,et al.  Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. , 2013, Biomaterials.

[36]  James H. Adair,et al.  Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. , 2008, ACS nano.

[37]  E. Scott,et al.  Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging. , 2012, Small.

[38]  Stanislav Emelianov,et al.  Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. , 2014, ACS nano.

[39]  Tayyaba Hasan,et al.  Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. , 2010, Chemical reviews.

[40]  James H. Adair,et al.  Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. , 2010, ACS nano.

[41]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[42]  Ahmed O Elzoghby,et al.  Albumin-based nanoparticles as potential controlled release drug delivery systems. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[43]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[44]  Chulhong Kim,et al.  Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. , 2011, Nature materials.

[45]  J. Fei,et al.  Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. , 2012, ACS nano.

[46]  Jian Wang,et al.  Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. , 2012, ACS nano.