A new algorithm for global optimization: Molecular-Inspired Parallel Tempering

A novel stochastic algorithm for global optimization, Molecular-Inspired Parallel Tempering (MIPT), is presented. MIPT incorporates some basic features of molecular dynamics simulation into the Parallel Tempering formulation. In MIPT, molecules move in the decision-variable-space as the result of different forces: repulsion, friction and random forces. Two different types of molecules are considered: explorers and refiners. Explorers present lower friction and are subject to repulsion forces causing them to move faster towards low molecular density regions. Refiner molecules achieve better values of the objective function and are subject to larger friction forces restricting their motion to a narrow region around their current position. The efficiency of MIPT is tested in five challenging case studies and compared with other established, well-known optimization methods. The results demonstrate that new MIPT is a competitive and efficient algorithm, reaching the global optimum with 100% success ratio in most cases, without requiring much computational effort.

[1]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[2]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[3]  Tibor Csendes,et al.  Noname manuscript No. (will be inserted by the editor) The GLOBAL Optimization Method Revisited , 2022 .

[4]  Yuan Xi-Gang,et al.  An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints , 2007 .

[5]  Masao Fukushima,et al.  Tabu Search directed by direct search methods for nonlinear global optimization , 2006, Eur. J. Oper. Res..

[6]  Zhilong Xiu,et al.  A modified iterative IOM approach for optimization of biochemical systems , 2008, Comput. Chem. Eng..

[7]  J. Pablo,et al.  Multicanonical parallel tempering , 2002, cond-mat/0201179.

[8]  Ulrich H E Hansmann,et al.  Parallel tempering simulations of HP‐36 , 2003, Proteins.

[9]  Yaohang Li,et al.  A decentralized parallel implementation for parallel tempering algorithm , 2009, Parallel Comput..

[10]  David J. Earl,et al.  Monte Carlo simulations. , 2008, Methods in molecular biology.

[11]  Yaohang Li,et al.  Hybrid parallel tempering and simulated annealing method , 2009, Appl. Math. Comput..

[12]  A. Neumaier Acta Numerica 2004: Complete search in continuous global optimization and constraint satisfaction , 2004 .

[13]  Wolfhard Janke,et al.  Make life simple: unleash the full power of the parallel tempering algorithm. , 2010, Physical review letters.

[14]  J. D. de Pablo,et al.  Optimal allocation of replicas in parallel tempering simulations. , 2005, The Journal of chemical physics.

[15]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[16]  F. Calvo,et al.  All-exchanges parallel tempering. , 2005, The Journal of chemical physics.

[17]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[18]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[19]  Panos M. Pardalos,et al.  Global optimization by continuous grasp , 2007, Optim. Lett..

[20]  David J. Earl,et al.  Optimal Allocation of Replicas to Processors in Parallel Tempering Simulations , 2004, physics/0402062.

[21]  Wiwut Tanthapanichakoon,et al.  Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation , 2006 .

[22]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[23]  M. Fukushima,et al.  Minimizing multimodal functions by simplex coding genetic algorithm , 2003 .

[24]  Dominik Gront,et al.  Efficient scheme for optimization of parallel tempering Monte Carlo method , 2007 .

[25]  F. Calvo Non-genetic global optimization methods in molecular science: An overview , 2009 .

[26]  J. Skolnick,et al.  Parallel-hat tempering: A Monte Carlo search scheme for the identification of low-energy structures , 2001 .

[27]  V. Favre-Nicolin,et al.  FOX, `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction , 2002 .

[28]  Jose A. Egea,et al.  Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method , 2009 .

[29]  Jonathan P. K. Doye,et al.  Entropic tempering: A method for overcoming quasiergodicity in simulation , 2000 .

[30]  Matthias Troyer,et al.  Feedback-optimized parallel tempering Monte Carlo , 2006, cond-mat/0602085.

[31]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[32]  Andrzej Sikorski,et al.  Properties of Star-Branched Polymer Chains. Application of the Replica Exchange Monte Carlo Method , 2002 .

[33]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[34]  George Tsatsaronis,et al.  Dynamic optimization with simulated annealing , 2005, Comput. Chem. Eng..

[35]  S. Rick,et al.  Replica exchange with dynamical scaling. , 2007, The Journal of chemical physics.

[36]  Wolfgang Wenzel,et al.  Predictive in silico all-atom folding of a four-helix protein with a free-energy model. , 2004, Journal of the American Chemical Society.

[37]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.