Atomic resolution structures from fragmented protein crystals by the cryoEM method MicroED

Traditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.

[1]  Randy J. Read,et al.  Evolving Methods for Macromolecular Crystallography , 2007 .

[2]  T. Gonen,et al.  Structure of catalase determined by MicroED , 2014, eLife.

[3]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[4]  D. Eisenberg,et al.  Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED , 2016, Proceedings of the National Academy of Sciences.

[5]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[6]  C. Nave A description of imperfections in protein crystals. , 1998, Acta crystallographica. Section D, Biological crystallography.

[7]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[8]  Tamir Gonen,et al.  MicroED data collection and processing , 2015, Acta crystallographica. Section A, Foundations and advances.

[9]  Troy C. Krzysiak,et al.  Transmission electron microscopy for the evaluation and optimization of crystal growth. , 2016, Acta crystallographica. Section D, Structural biology.

[10]  A. Hinck,et al.  Assembly of TβRI: TβRII:TGFβ ternary complex in vitro with receptor extracellular domains is cooperative and isoform-dependent , 2005 .

[11]  T. Gonen,et al.  Micro- and nanocrystal preparation for MicroED and XFEL serial crystallography by fragmentation of imperfect crystals , 2017 .

[12]  K. Harata,et al.  Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. , 2006, Acta crystallographica. Section D, Biological crystallography.

[13]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[14]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[15]  R E Hubbard,et al.  Locating interaction sites on proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol , 1999, Proteins.

[16]  Ilme Schlichting,et al.  Serial femtosecond crystallography: the first five years , 2015, IUCrJ.

[17]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[19]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[20]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[21]  T. Gonen,et al.  The collection of MicroED data for macromolecular crystallography , 2016, Nature Protocols.

[22]  Garth J. Williams,et al.  Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser , 2015, IUCrJ.

[23]  C. Darwin XCII. The reflexion of X-rays from imperfect crystals , 1922 .

[24]  Concerning the detection of X-ray interferences , 2018 .

[25]  Tamir Gonen,et al.  High-resolution structure determination by continuous rotation data collection in MicroED , 2014, Nature Methods.

[26]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[27]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  Manfred Burghammer,et al.  Small is beautiful: protein micro-crystallography , 1998, Nature Structural Biology.

[29]  Koji Yonekura,et al.  Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges , 2015, Proceedings of the National Academy of Sciences.

[30]  Uwe Weierstall,et al.  Liquid sample delivery techniques for serial femtosecond crystallography , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[32]  Nicholas K. Sauter,et al.  Structure of the toxic core of α-synuclein from invisible crystals , 2015, Nature.

[33]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[34]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[35]  Oleg V. Tsodikov,et al.  Data publication with the structural biology data grid supports live analysis , 2016, Nature Communications.

[36]  T. Gonen,et al.  Modeling truncated pixel values of faint reflections in MicroED images1 , 2016, Journal of applied crystallography.