Assimilation de données par filtrage pour les systèmes hyperboliques du second ordre - Applications à la mécanique cardiaque. (Filtering based data assimilation for second order hyperbolic PDEs - Applications in cardiac mechanics)

L'objectif est de formuler des methodes d'assimilation de donnees adaptees a la simulation du comportement mecanique du coeur tout au long d'un battement cardiaque, afin de beneficier du developpement des techniques d'imagerie et de l'interet croissant des cliniciens pour la simulation numerique. Nous presentons une strategie originale par filtrage, adaptee a l'estimation de systemes mecaniques, et plus generalement de systemes hyperboliques du second ordre, avec des conditions initiales et des parametres inconnus. La trajectoire est estimee via des observateurs de Luenberger efficaces exploitant la stabilisation par feedback a des fins d'estimation. A la difference d'approches Kalmaniennes classiques, ces filtres peuvent etre numeriquement adaptes a des systemes issus de la discretisation d'EDPs, et la stabilite exponentielle du systeme de l'erreur d'observation assure la convergence de l'estimateur. Ainsi, nous analysons en particulier la strategie collocalisee du "Direct Velocity Feedback" utilisee en controle des structures. Nous formulons aussi une methode originale dans le cas de mesures de positions, et par extension de contours dans une image. Pour les parametres, nous etendons ensuite l'estimateur en ajoutant une dynamique parametrique fictive. Les observateurs d'etat precedents restreignent alors l'incertitude a l'espace parametrique afin d'y appliquer des filtres de rang reduit H2 ou Hinfini. La convergence de l'estimateur en resultant est mathematiquement demontree, et illustree en estimant des parametres distribues de type raideurs et contractilites, avec la perspective d'aide au diagnostic de regions infarcies du muscle cardiaque.

[1]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[2]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems , 2010 .

[3]  Huy Duong Bui,et al.  Inverse Problems in the Mechanics of Materials: An Introduction , 1994 .

[4]  Annie Raoult,et al.  Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics , 2008 .

[5]  Laurent Rineau,et al.  High-Quality Consistent Meshing of Multi-label Datasets , 2007, IPMI.

[6]  Leon Axel,et al.  Tagged Magnetic Resonance Imaging of the Heart: a Survey , 2004 .

[7]  Tamer Başar,et al.  Paradigms for Robustness in Controller and Filter Designs1 , 2001 .

[8]  Michel Sorine,et al.  Differential model of excitation - contraction coupling in a cardiac cell for multicycle simulations , 2005 .

[9]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[10]  Kevin F. Augenstein,et al.  Method and apparatus for soft tissue material parameter estimation using tissue tagged Magnetic Resonance Imaging. , 2005, Journal of biomechanical engineering.

[11]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[12]  Frank B. Sachse,et al.  Computational Cardiology , 2004, Lecture Notes in Computer Science.

[13]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[14]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[15]  Eugene Crystal,et al.  An Experimental Framework to Validate 3D Models of Cardiac Electrophysiology Via Optical Imaging and MRI , 2007, FIMH.

[16]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[17]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[18]  O. Talagrand,et al.  Bayesian Estimation. Optimal Interpolation. Statistical Linear Estimation , 2003 .

[19]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[20]  Maxime Sermesant,et al.  Modèle électromécanique du coeur pour l'analyse d'image et la simulation , 2003 .

[21]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[22]  Miguel A. Fernández,et al.  A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling , 2010 .

[23]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[24]  Pengcheng Shi,et al.  Cardiac Motion Recovery: Continuous Dynamics, Discrete Measurements, and Optimal Estimation , 2006, MICCAI.

[25]  Cristian Lorenz,et al.  Surface based cardiac and respiratory motion extraction for pulmonary structures from multi-phase CT , 2007, SPIE Medical Imaging.

[26]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[27]  M. Shubov Spectral operators generated by damped hyperbolic equations , 1997 .

[28]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[29]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[30]  Andrew D. McCulloch,et al.  Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle , 2000 .

[31]  E. Zuazua,et al.  The rate at which energy decays in a damped String , 1994 .

[32]  C. Peskin The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods , 1982 .

[33]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[34]  P. Tallec,et al.  Joint state and parameter estimation for distributed mechanical systems , 2008 .

[35]  Y Rudy,et al.  The electrocardiographic inverse problem. , 1992, Critical reviews in biomedical engineering.

[36]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[37]  Frank Evans,et al.  Measurement of Ventricular Wall Motion, Epicardial Electrical Mapping, and Myocardial Fiber Angles in the Same Heart , 2001, FIMH.

[38]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[39]  E. Zuazua,et al.  The rate at which energy decays in a string damped at one end , 1995 .

[40]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[41]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[42]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[43]  Alexandre Nassiopoulos Identification rapide de la température dans les structures du génie civil , 2008 .

[44]  Aissa Guesmia Contributions a la controlabilite exacte et la stabilisation des systemes d'evolution , 2000 .

[45]  W. Fleming Deterministic nonlinear filtering , 1997 .

[46]  Dimitris N. Metaxas,et al.  Automated Segmentation of the Left and Right Ventricles in 4D Cardiac SPAMM Images , 2002, MICCAI.

[47]  Paul-Louis George,et al.  Fully automatic mesh generator for 3D domains of any shape , 1990, IMPACT Comput. Sci. Eng..

[48]  N. Stergiopulos,et al.  Total arterial inertance as the fourth element of the windkessel model. , 1999, American journal of physiology. Heart and circulatory physiology.

[49]  P. Hunter,et al.  Modelling the mechanical properties of cardiac muscle. , 1998, Progress in biophysics and molecular biology.

[50]  Qinghua Zhang,et al.  Global adaptive observer for a class of nonlinear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[51]  Jacques Ohayon,et al.  An Integrative Model of the Self-Sustained Oscillating Contractions of Cardiac Myocytes , 2005, Acta biotheoretica.

[52]  Y. Rouchdy,et al.  A nonlinear elastic deformable template for soft structure segmentation: application to the heart segmentation in MRI , 2007 .

[53]  Alexander V. Panfilov,et al.  Dynamical simulations of twisted scroll rings in three-dimensional excitable media , 1985 .

[54]  Frédéric Bourquin,et al.  A numerical controllability test for distributed systems , 1995 .

[55]  Alain Bensoussan,et al.  Filtrage optimal des systèmes linéaires , 1971 .

[56]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[57]  Qinghua Zhang Adaptive Observer for MIMO Linear Time Varying Systems , 2001 .

[58]  R. Mortensen Maximum-likelihood recursive nonlinear filtering , 1968 .

[59]  J. Baerentzen,et al.  Signed distance computation using the angle weighted pseudonormal , 2005, IEEE Transactions on Visualization and Computer Graphics.

[60]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[61]  H. T. Banks,et al.  Approximation issues for applications in optimal control and parameter estimation , 1998 .

[62]  Jean-Frédéric Gerbeau,et al.  A partitioned fluid-structure algorithm for elastic thin valves with contact , 2008 .

[63]  Valérie Moreau-Villéger,et al.  Méthodes variationnelles et séquentielles pour l'étude de la contraction cardiaque. (Variational and sequential methods for the study of the cardiac contraction) , 2005 .

[64]  P. Tallec Numerical methods for nonlinear three-dimensional elasticity , 1994 .

[65]  H Benoit-Cattin,et al.  The SIMRI project: a versatile and interactive MRI simulator. , 2005, Journal of magnetic resonance.

[66]  A. Huxley Muscle structure and theories of contraction. , 1957, Progress in biophysics and biophysical chemistry.

[67]  D. Caillerie,et al.  Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium , 2003 .

[68]  J. Meunier,et al.  Echographic image mean gray level changes with tissue dynamics: a system-based model study , 1995, IEEE Transactions on Biomedical Engineering.

[69]  E. Zuazua,et al.  Uniformly exponentially stable approximations for a class of damped systems , 2009 .

[70]  F.B. Sachse,et al.  A model based approach to assignment of myocardial fibre orientation , 1999, Computers in Cardiology 1999. Vol.26 (Cat. No.99CH37004).

[71]  D P Pioletti,et al.  Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. , 1998, Journal of biomechanics.

[72]  I.E. Magnin,et al.  A new fully-digital anthropomorphic and dynamic thorax/heart model , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[73]  Qinghua Zhang,et al.  Adaptive observer with exponential forgetting factor for linear time varying systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[74]  Ayman Mourad,et al.  DESCRIPTION TOPOLOGIQUE DE L'ARCHITECTURE FIBREUSE ET MODELISATION MECANIQUE DU MYOCARDE , 2003 .

[75]  Kawal S. Rhode,et al.  Simulation of the Electromechanical Activity of the Heart Using XMR Interventional Imaging , 2004, MICCAI.

[76]  Manuel Collet,et al.  Active damping of a micro-cantilever piezo-composite beam , 2003 .

[77]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[78]  James S. Duncan,et al.  Estimation of 3D left ventricular deformation from echocardiography , 2001, Medical Image Anal..

[79]  Elsa D. Angelini,et al.  Tracking Endocardium Using Optical Flow along Iso-Value Curve , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[80]  Jeffrey K. Uhlmann,et al.  Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[81]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[82]  Louis Roder Tcheugoué Tébou,et al.  Uniform boundary stabilization of the finite difference space discretization of the 1−d wave equation , 2007, Adv. Comput. Math..

[83]  V. Mallet,et al.  Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling , 2006 .

[84]  Elsa D. Angelini,et al.  Variational segmentation framework in prolate spheroidal coordinates for 3D real-time echocardiography , 2006, SPIE Medical Imaging.

[85]  Taous-Meriem Laleg-Kirati,et al.  Separation of arterial pressure into a nonlinear superposition of solitary waves and a windkessel flow , 2007, Biomed. Signal Process. Control..

[86]  O. Gerard,et al.  Review of Myocardial Motion Estimation Methods from Optical Flow Tracking on Ultrasound Data , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[87]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[88]  Frédérique Clément,et al.  A Biomechanical Model of Muscle Contraction , 2001, MICCAI.

[89]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[90]  G. Zahalak A distribution-moment approximation for kinetic theories of muscular contraction , 1981 .

[91]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[92]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[93]  Dominique Chapelle,et al.  Robust filtering for joint state parameter estimation for distributed mechanical systems , 2008 .

[94]  Miguel A. Fernández,et al.  Towards the Numerical Simulation of Electrocardiograms , 2007, FIMH.

[95]  Laurent D. Cohen,et al.  Using Deformable Surfaces to Segment 3-D Images and Infer Differential Structures , 1992, ECCV.

[96]  M. Sorine,et al.  Identifiability of a reduced model of pulsatile flow in an arterial compartment , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[97]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[98]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[99]  Dominique Chapelle,et al.  Simulation of 3D Ultrasound with a Realistic Electro-mechanical Model of the Heart , 2007, FIMH.

[100]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[101]  Laurent D. Cohen,et al.  Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization , 2005 .

[102]  D. Luenberger An introduction to observers , 1971 .

[103]  Olivier Ecabert,et al.  Automatic Whole Heart Segmentation in Static Magnetic Resonance Image Volumes , 2007, MICCAI.

[104]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[105]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[106]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[107]  Stefano Mariani,et al.  Unscented Kalman filtering for nonlinear structural dynamics , 2007 .

[108]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[109]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[110]  Hervé Delingette,et al.  A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts , 2007, IEEE Transactions on Medical Imaging.

[111]  Maxime Sermesant,et al.  Cardiac Function Estimation from MRI Using a Heart Model and Data Assimilation: Advances and Difficulties , 2005, FIMH.

[112]  Ibrahim Hoteit Filtres de Kalman réduits et efficaces pour l'assimilation de données en océanographie. (Efficient reduced Kalman filters for data assimilation in oceanography) , 2001 .

[113]  Bryan E. Anderson,et al.  The Netter Collection of medical illustrations , 1994 .

[114]  Enrique Zuazua,et al.  An Introduction to the Controllability of Partial Differential Equations , 2004 .

[115]  Jerry L. Prince,et al.  Fast tracking of cardiac motion using 3D-HARP , 2005, IEEE Transactions on Biomedical Engineering.

[116]  P. Hunter,et al.  Computational mechanics of the heart : From tissue structure to ventricular function , 2000 .