A Forecasting Model for Data Center Bandwidth Utilization

Bandwidth optimization and its efficient utilization is more challenging in operating data centers. Our model can assist for proper usage of resource utilization and accommodate large scale of bursty data. In this paper we propose forecast model for Data Center Bandwidth Utilization system; a forecast model for data centers to predict and estimate proper bandwidth utilization in real-world situations. Based on self-learning procedures, the proposed forecasting model will optimize the traffic and predict bandwidth more efficiently. Our approach is based on Time Series and Vector Autoregression (VAR-Model) models, it optimizes the bandwidth traffic detecting and diagnosing the future based on historical data.

[1]  Dzmitry Kliazovich,et al.  GreenCloud: A Packet-Level Simulator of Energy-Aware Cloud Computing Data Centers , 2010, GLOBECOM.

[2]  Miguel Rio,et al.  Internet Traffic Forecasting using Neural Networks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[3]  Rob J Hyndman,et al.  Minimum Sample Size requirements for Seasonal Forecasting Models , 2007 .

[4]  Konstantina Papagiannaki,et al.  Long-term forecasting of Internet backbone traffic , 2005, IEEE Transactions on Neural Networks.

[5]  Albert G. Greenberg,et al.  The nature of data center traffic: measurements & analysis , 2009, IMC '09.

[6]  Arie Shoshani,et al.  A Flexible Reservation Algorithm for Advance Network Provisioning , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[7]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[8]  Rob J Hyndman,et al.  A state space framework for automatic forecasting using exponential smoothing methods , 2002 .

[9]  William E. Griffiths,et al.  Using EViews for Principles of Econometrics , 2008 .

[10]  Craig Hiemstra,et al.  Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation , 1994 .

[11]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[12]  Pedro Sousa,et al.  Multi‐scale Internet traffic forecasting using neural networks and time series methods , 2010, Expert Syst. J. Knowl. Eng..

[13]  Ming Wu,et al.  Network bandwidth predictor (NBP): a system for online network performance forecasting , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[14]  Yang Yu,et al.  Dynamic Load Balancing Multipathing in Data Center Ethernet , 2010, 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[15]  Yong Zeng,et al.  ARCH-Based Traffic Forecasting and Dynamic Bandwidth Provisioning for Periodically Measured Nonstationary Traffic , 2007, IEEE/ACM Transactions on Networking.

[16]  Zhao Wen-tao,et al.  Efficient available bandwidth estimation for network paths , 2008 .

[17]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[18]  Konstantina Papagiannaki,et al.  c-Through: part-time optics in data centers , 2010, SIGCOMM 2010.

[19]  Amin Vahdat,et al.  Helios: a hybrid electrical/optical switch architecture for modular data centers , 2010, SIGCOMM '10.

[20]  Rob J Hyndman,et al.  The admissible parameter space for exponential smoothing models , 2008 .

[21]  M. Frans Kaashoek,et al.  A measurement study of available bandwidth estimation tools , 2003, IMC '03.

[22]  E. S. Gardner,et al.  Forecasting Trends in Time Series , 1985 .

[23]  Amin Vahdat,et al.  PortLand: a scalable fault-tolerant layer 2 data center network fabric , 2009, SIGCOMM '09.

[24]  Antonio Pescapè,et al.  Unified architecture for network measurement: The case of available bandwidth , 2012, J. Netw. Comput. Appl..

[25]  Peter Steenkiste,et al.  Evaluation and characterization of available bandwidth probing techniques , 2003, IEEE J. Sel. Areas Commun..

[26]  Manish Jain,et al.  End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput , 2002, SIGCOMM 2002.

[27]  Peter A. Dinda,et al.  An empirical study of the multiscale predictability of network traffic , 2004, Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, 2004..

[28]  Long Kang Time-series data analysis using EViews , 2011 .

[29]  Man-Soo Han,et al.  Dynamic bandwidth allocation with high utilization for XG-PON , 2014, 16th International Conference on Advanced Communication Technology.

[30]  Albert Y. Zomaya,et al.  Quantitative comparisons of the state‐of‐the‐art data center architectures , 2013, Concurr. Comput. Pract. Exp..

[31]  San-qi Li,et al.  A predictability analysis of network traffic , 2002, Comput. Networks.

[32]  Abdallah Shami,et al.  Traffic-prediction-assisted dynamic bandwidth assignment for hybrid optical wireless networks , 2012, Comput. Networks.

[33]  Jaesik Choi,et al.  Best Predictive Generalized Linear Mixed Model with Predictive Lasso for High-Speed Network Data Analysis , 2015 .

[34]  Wucherl Yoo,et al.  Network bandwidth utilization forecast model on high bandwidth networks , 2015, 2015 International Conference on Computing, Networking and Communications (ICNC).

[35]  R. Hyndman Automatic time series forecasting , 2006 .