Two truncated identities of Gauss
暂无分享,去创建一个
[1] GEORGE E. ANDREWS,et al. Shanks' convergence acceleration transform, Padé approximants and partitions , 1986, J. Comb. Theory, Ser. A.
[2] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[3] Mircea Merca,et al. Fast Algorithm for Generating Ascending Compositions , 2012, J. Math. Model. Algorithms.
[4] Doron Zeilberger,et al. Bijecting Euler's Partitions-Recurrence , 1985 .
[5] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[6] Daniel Shanks. Two theorems of Gauss , 1958 .
[7] Daniel Shanks,et al. A SHORT PROOF OF AN IDENTITY OF EULER , 1951 .
[8] G. E. Andrews,et al. Truncation of the Rogers–Ramanujan Theta Series , 1983 .
[9] It Informatics. On-Line Encyclopedia of Integer Sequences , 2010 .
[10] George E. Andrews,et al. The fifth and seventh order mock theta functions , 1986 .
[11] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[12] S. Ole Warnaar. Partial-Sum Analogues of the Rogers - Ramanujan Identities , 2002, J. Comb. Theory, Ser. A.
[13] Robin J. Chapman. Partition identities arising from involutions , 2003, Australas. J Comb..
[14] George E. Andrews,et al. The truncated pentagonal number theorem , 2012, J. Comb. Theory, Ser. A.
[15] James A. Sellers,et al. Arithmetic properties of partitions with odd parts distinct , 2010 .