A rigged Hilbert space of Hardy‐class functions: Applications to resonances

The explicit construction of a dense subspace Φ of square integrable functions on the positive half of the real line is given. This space Φ has the properties that: (1) it is endowed with a metrizable nuclear topology, (2) it is stable under multiplication by x, and (3) the functions in Φ have suitable analytical continuation to a half plane. The space Φ* of functions which are conjugate to elements of Φ is also considered. Then the triplets Φ⊆ L2 (0,∞)⊆Φ′ and Φ*⊆ L2 (0,∞)⊆Φ*′ are used to give a description of resonances.

[1]  A. Bohm,et al.  The rigged Hilbert space and quantum mechanics , 1978 .

[2]  Complex dynamical variables for multiparticle systems with analytic interactions. I , 1974 .

[3]  Jean-Pierre Antoine,et al.  Dirac Formalism and Symmetry Problems in Quantum Mechanics. I. General Dirac Formalism , 1969 .

[4]  Olaf Melsheimer Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory , 1974 .

[5]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[6]  G. Ghirardi,et al.  Decay theory of unstable quantum systems , 1978 .

[7]  W. Rudin Real and complex analysis , 1968 .

[8]  Arno R Bohm,et al.  Gamow state vectors as functionals over subspaces of the nuclear space , 1979 .

[9]  W. W. Bell Scattering theory in quantum mechanics , 1960 .

[10]  M. Reed,et al.  Fourier Analysis, Self-Adjointness , 1975 .

[11]  Arno R Bohm,et al.  Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics , 1981 .

[12]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[13]  A. Messiah Quantum Mechanics , 1961 .

[14]  Barry Simon,et al.  Analysis of Operators , 1978 .

[15]  William H. Ruckle,et al.  Nuclear Locally Convex Spaces , 1972 .

[16]  E. Sudarshan,et al.  Resonances, scattering theory, and rigged Hilbert spaces , 1980 .

[17]  J. Roberts,et al.  Rigged Hilbert spaces in quantum mechanics , 1966 .

[18]  E. C. Titchmarsh,et al.  The theory of functions , 1933 .

[19]  Resonances of Perturbed Selfadjoint Operators and their Eigenfunctionals , 1976 .