Progress of the CHARA/SPICA project

CHARA/SPICA (Stellar Parameters and Images with a Cophased Array) is currently being developed at Observatoire de la Cote d’Azur. It will be installed at the visible focus of the CHARA Array by the end of 2021. It has been designed to perform a large survey of fundamental stellar parameters with, in the possible cases, a detailed imaging of the surface or environment of stars. To reach the required precision and sensitivity, CHARA/SPICA combines a low spectral resolution mode R = 140 in the visible and single-mode fibers fed by the AO stages of CHARA. This setup generates additional needs before the interferometric combination: the compensation of atmospheric refraction and longitudinal dispersion, and the fringe stabilization. In this paper, we present the main features of the 6-telescopes fibered visible beam combiner (SPICA-VIS) together with the first laboratory and on-sky results of the fringe tracker (SPICA-FT). We describe also the new fringe-tracker simulator developed in parallel to SPICA-FT.

[1]  N. Nardetto Pulsating stars and eclipsing binaries as distances indicators in the universe , 2018 .

[2]  Theo ten Brummelaar,et al.  SPICA, a new 6T visible beam combiner for CHARA: science, design and interfaces , 2018, Astronomical Telescopes + Instrumentation.

[3]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[4]  Gordon A. H. Walker,et al.  Ultraprecise photometry from space: simulations of the MOST space telescope performance. , 1999 .

[5]  Olivier Chesneau,et al.  Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars , 2016, 1604.07700.

[6]  Stefan Kraus,et al.  Astronomical interferometry with near-IR e-APD at CHARA: characterization, optimization and on-sky operation , 2018, Astronomical Telescopes + Instrumentation.

[7]  A. Baglin,et al.  The COROT Mission and its Seismology Programme , 2002 .

[8]  D. Mourard,et al.  Precise calibration of the dependence of surface brightness–colour relations on colour and class for late-type stars (Corrigendum) , 2020, Astronomy & Astrophysics.

[9]  M. A. Martinod,et al.  Long baseline interferometry in the visible: first results of the FRIEND project , 2016, Astronomical Telescopes + Instrumentation.

[10]  David F. Buscher,et al.  Fringe tracking and spatial filtering: phase jumps and dropouts , 2008, Astronomical Telescopes + Instrumentation.

[11]  John D. Monnier,et al.  Spatio-spectral encoding of fringes in optical long-baseline interferometry - Example of the 3T and 4T recombining mode of VEGA/CHARA , 2011 .

[12]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[13]  Karine Perraut,et al.  SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Julien Borgnino,et al.  Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment , 1997 .

[15]  Pierre Labeye,et al.  Composants optiques intégrés pour l’interférométrie astronomique , 2008 .

[16]  L. Bigot,et al.  Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data , 2014, 1410.4780.

[17]  Theo A. ten Brummelaar,et al.  Preliminary results from the longitudinal dispersion compensation system for the CHARA array , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  B. Pilecki,et al.  A distance to the Large Magellanic Cloud that is precise to one per cent , 2019, Nature.

[19]  H. Bruntt,et al.  Asteroseismology with the WIRE satellite , 2007, astro-ph/0702014.

[20]  Rafael Millan-Gabet,et al.  CHARA Michigan phase-tracker (CHAMP): a preliminary performance report , 2008, Astronomical Telescopes + Instrumentation.

[21]  James H. Clark,et al.  Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer , 2016, 1601.00036.

[22]  Karine Perraut,et al.  Benchmarking the fundamental parameters of Ap stars with optical long-baseline interferometric measurements , 2020, Astronomy & Astrophysics.

[23]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[24]  Karine Perraut,et al.  Performance, results, and prospects of the visible spectrograph VEGA on CHARA , 2012, Other Conferences.

[25]  A. Delboulbé,et al.  Single-mode waveguides for GRAVITY , 2018, Astronomy & Astrophysics.

[26]  John D. Monnier,et al.  MIRC-X: A Highly Sensitive Six-telescope Interferometric Imager at the CHARA Array , 2020, The Astronomical Journal.

[27]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[28]  John D. Monnier,et al.  The MIRC-X 6-telescope imager: key science drivers, instrument design and operation , 2018, Astronomical Telescopes + Instrumentation.

[29]  S. Ridgway,et al.  THE CLASSIC/CLIMB BEAM COMBINER AT THE CHARA ARRAY , 2013 .

[30]  F. Millour,et al.  Fibered visible interferometry and adaptive optics: FRIEND at CHARA , 2018, Astronomy & Astrophysics.

[31]  Peter G. Tuthill,et al.  Optical and Infrared Interferometry and Imaging VI , 2016 .

[32]  Ennio Poretti,et al.  From the stellar properties of HD 219134 to the internal compositions of its transiting exoplanets , 2019, Astronomy & Astrophysics.

[33]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[34]  Frank Eisenhauer,et al.  Fringe tracking optimization with 4 beams: application to GRAVITY , 2008, Astronomical Telescopes + Instrumentation.

[35]  M. Shao,et al.  Atmospheric phase measurements with the Mark III stellar interferometer. , 1987, Applied optics.

[36]  Nicolas Nardetto,et al.  A Distance Determination to the Small Magellanic Cloud with an Accuracy of Better than Two Percent Based on Late-type Eclipsing Binary Stars , 2020 .

[37]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[38]  John D. Monnier,et al.  CHARA array adaptive optics: complex operational software and performance , 2020, Astronomical Telescopes + Instrumentation.

[39]  Guy Perrin,et al.  Comparison of fringe-tracking algorithms for single-mode near-infrared long-baseline interferometers , 2014 .

[40]  J.-M. Mariotti,et al.  Deriving object visibilities from interferograms obtained with a fiber stellar interferometer , 1997 .