Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing

This paper describes unusual properties of group II intron-encoded reverse transcriptases. They have higher processivity, fidelity, and thermostability than retroviral enzymes. Moreover, they have an unexpected proclivity for template switching that makes them very useful for a number of cloning applications.

[1]  Wei-Shau Hu,et al.  HIV-1 reverse transcription. , 2012, Cold Spring Harbor perspectives in medicine.

[2]  R. Skirgaila,et al.  Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. , 2012, Protein engineering, design & selection : PEDS.

[3]  Li Wu,et al.  Database for bacterial group II introns , 2011, Nucleic Acids Res..

[4]  A. Lambowitz,et al.  Group II introns: mobile ribozymes that invade DNA. , 2011, Cold Spring Harbor perspectives in biology.

[5]  R. Darnell,et al.  Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data , 2011, Nature Biotechnology.

[6]  Ayelet T. Lamm,et al.  Multimodal RNA-seq using single-strand, double-strand, and CircLigase-based capture yields a refined and extended description of the C. elegans transcriptome. , 2011, Genome research.

[7]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[8]  Alon Herschhorn,et al.  Reverse transcriptases can clamp together nucleic acids strands with two complementary bases at their 3′-termini for initiating DNA synthesis , 2010, Nucleic acids research.

[9]  G. Mayer,et al.  RNA diagnostics: real‐time RT‐PCR strategies and promising novel target RNAs , 2011, Wiley interdisciplinary reviews. RNA.

[10]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[11]  Andrew C. Adey,et al.  Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition , 2010, Genome Biology.

[12]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[13]  B. Lampson,et al.  A Group IIC-Type Intron Interrupts the rRNA Methylase Gene of Geobacillus stearothermophilus Strain 10 , 2010, Journal of bacteriology.

[14]  G. Mohr,et al.  Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns , 2010, PLoS biology.

[15]  E. Cuppen,et al.  Limitations and possibilities of small RNA digital gene expression profiling , 2009, Nature Methods.

[16]  David Tollervey,et al.  Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs , 2009, Proceedings of the National Academy of Sciences.

[17]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[18]  H. Hogrefe,et al.  Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer , 2008, Nucleic acids research.

[19]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[20]  P. Bergquist,et al.  Reverse transcriptases: intron-encoded proteins found in thermophilic bacteria. , 2007, Gene.

[21]  Warren A. Kibbe,et al.  The issue of amalgams. , 1996, Nucleic Acids Res..

[22]  H. Hogrefe,et al.  Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. , 2007, Analytical biochemistry.

[23]  A. Tsaftaris,et al.  Rolling circle amplification-RACE: a method for simultaneous isolation of 5' and 3' cDNA ends from amplified cDNA templates. , 2006, BioTechniques.

[24]  D. Waugh,et al.  Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. , 2006, Protein expression and purification.

[25]  H. Takami,et al.  Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus. , 2005, Gene.

[26]  M. Belfort,et al.  Recruitment of host functions suggests a repair pathway for late steps in group II intron retrohoming. , 2005, Genes & development.

[27]  M. Belfort,et al.  Localization, mobility and fidelity of retrotransposed Group II introns in rRNA genes , 2005, Nucleic acids research.

[28]  M. Belfort,et al.  Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. , 2005, RNA.

[29]  B. Lampson,et al.  A Group II Intron-Type Open Reading Frame from the Thermophile Bacillus (Geobacillus) stearothermophilus Encodes a Heat-Stable Reverse Transcriptase , 2004, Applied and Environmental Microbiology.

[30]  S. Henriksen,et al.  Assessment of FIV-C infection of cats as a function of treatment with the protease inhibitor, TL-3 , 2004, Retrovirology.

[31]  X. Cui A Group II Intron-encoded Maturase Functions Preferentially In Cis and Requires Both the Reverse Transcriptase and X Domains to Promote RNA Splicing , 2004 .

[32]  A. Bibiłło,et al.  End-to-End Template Jumping by the Reverse Transcriptase Encoded by the R2 Retrotransposon* , 2004, Journal of Biological Chemistry.

[33]  John D. McGregor,et al.  Domain * , 2004, J. Object Technol..

[34]  Lakshmi Krishnamoorthy,et al.  Preliminary structure analysis of the DH/PH domains of leukemia-associated RhoGEF. , 2003, Acta crystallographica. Section D, Biological crystallography.

[35]  Bostjan Kobe,et al.  Crystal structures of fusion proteins with large‐affinity tags , 2003, Protein science : a publication of the Protein Society.

[36]  A. Lambowitz,et al.  Characterization of the C-terminal DNA-binding/DNA endonuclease region of a group II intron-encoded protein. , 2002, Journal of molecular biology.

[37]  A. Bibiłło,et al.  High Processivity of the Reverse Transcriptase from a Non-long Terminal Repeat Retrotransposon* , 2002, The Journal of Biological Chemistry.

[38]  A. Bibiłło,et al.  The reverse transcriptase of the R2 non-LTR retrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. , 2002, Journal of molecular biology.

[39]  A. Lambowitz,et al.  Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria , 2001, Nature Biotechnology.

[40]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[41]  B. Margolis,et al.  Generation of deletion and point mutations with one primer in a single cloning step. , 2000, BioTechniques.

[42]  B. Sullenger,et al.  Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. , 2000, Science.

[43]  R. Saldanha,et al.  RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. , 1999, Biochemistry.

[44]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[45]  A. Lambowitz,et al.  De novo and DNA primer-mediated initiation of cDNA synthesis by the mauriceville retroplasmid reverse transcriptase involve recognition of a 3' CCA sequence. , 1997, Journal of molecular biology.

[46]  H. Wang,et al.  The Mauriceville plasmid of Neurospora spp. uses novel mechanisms for initiating reverse transcription in vivo , 1994, Molecular and cellular biology.

[47]  L. Loeb,et al.  Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. , 1992, Biochemistry.

[48]  T. Holton,et al.  A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. , 1991, Nucleic acids research.

[49]  L. Loeb,et al.  On the fidelity of DNA replication: manganese mutagenesis in vitro. , 1985, Biochemistry.

[50]  T. Kunkel,et al.  On the fidelity of DNA replication. , 1979, Cold Spring Harbor symposia on quantitative biology.

[51]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.