Optimal Load Modal Parameters Using Particle Swarm Optimization

Dynamic load models are of growing importance to the studies of power system dynamic analysis. However, the efficiency of such a model depends on the accuracy of model's parameter set. We propose a relatively new approach called particle swarm optimization (PSO), which has already been applied in various other fields and has been reported to show effective and efficient performance, to estimate the model's parameter set. The model parameter set is estimated by PSO, where the objective function to be minimized is the squared-error function between the simulating and experimental data. Tests of air conditioner response to voltage sags are documented. Significant improvements in simulation accuracy are demonstrated.

[1]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[2]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[3]  Wang Zhi-gang,et al.  A modified particle swarm optimization , 2009 .

[4]  J. W. Shaffer,et al.  Air conditioner response to transmission faults , 1997 .

[5]  M. Sedighizadeh,et al.  Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network , 2007 .

[6]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[7]  Yoshikazu Fukuyama,et al.  A hybrid particle swarm optimization for distribution state estimation , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[8]  D. Kosterev,et al.  Phasor modeling approach for single phase A/C motors , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[9]  Yangsheng Xu,et al.  Particle Swarm Optimization for Operational Parameters of Series Hybrid Electric Vehicle , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[10]  Wen-Shiow Kao,et al.  Dynamic load modeling in Taipower system stability studies , 1995 .

[11]  H. Yoshida,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 1999, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[12]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[14]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[15]  F. Nozari,et al.  Load modeling for power flow and transient stability computer studies , 1988 .

[16]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[17]  Nico Karssemeijer,et al.  Parameter Estimation in Stochastic Mammogram Model by Heuristic Optimization Techniques , 2006, IEEE Transactions on Information Technology in Biomedicine.

[18]  D. C. Dawson,et al.  Transmission voltage recovery delayed by stalled air conditioner compressors , 1992 .

[19]  Wang Jiaying,et al.  A modified particle swarm optimization algorithm , 2005 .

[20]  L. S. Moulin,et al.  Dynamic Security Border Identification Using Enhanced Particle Swarm Optimization , 2002, IEEE Power Engineering Review.

[21]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.