Light Pulse Shapes in Liquid Scintillators Originating From Gamma-Rays and Neutrons

Liquid scintillators loaded with boron-10 or lithium-6 are capable to detect gamma rays, fast neutrons and also thermal neutrons. One of the popular methods applied in order to distinguish events originating from different particles is the pulse shape discrimination (PSD). The previously presented study of boron-10 loaded liquid scintillators using the PSD method showed different discrimination performance in scintillators such as BC523A, BC523A2, EJ339A2 and EJ309B5. It triggered a further study of the light pulse shapes in these scintillators originating from events related to gamma rays, fast and thermal neutrons. The light pulse shapes, measured using the single photon method, were recorded together with the 2-dimensional n/gamma discrimination data. Next, the recorded light pulses were gated using energy and the PSD information to extract pulses characteristic of the only one kind of particles. Finally, the analysis of the light pulse shapes with multi-exponential fits and calculation of decay time constants and intensities of components were performed. The results were compared with the data obtained for liquid scintillators not sensitive to thermal neutrons BC501A, EJ301 and EJ309.