Tag-Based Social Image Search: Toward Relevant and Diverse Results

Recent years have witnessed a great success of social media websites. Tag-based image search is an important approach to access the image content of in- terest on these websites. However, the existing ranking methods for tag-based image search frequently return results that are irrelevant or lack of diversity. This chapter presents a diverse relevance ranking scheme which simultaneously takes relevance and diversity into account by exploring the content of images and their associated tags. First, it estimates the relevance scores of images with respect to the query term based on both visual information of images and semantic information of associ- ated tags. Then semantic similarities of social images are estimated based on their tags. Based on the relevance scores and the similarities, the ranking list is generated by a greedy ordering algorithm which optimizes Average Diverse Precision (ADP), a novel measure that is extended from the conventional Average Precision (AP). Comprehensive experiments and user studies demonstrate the effectiveness of the approach.

[1]  E. Minium Statistical reasoning in psychology and education , 1970 .

[2]  S. H. Srinivasan,et al.  Finding near-duplicate images on the web using fingerprints , 2008, ACM Multimedia.

[3]  Shih-Fu Chang,et al.  Detection of non-identical duplicate consumer photographs , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[4]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[5]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[6]  Kilian Q. Weinberger,et al.  Resolving tag ambiguity , 2008, ACM Multimedia.

[7]  Sourav S. Bhowmick,et al.  Image tag clarity: in search of visual-representative tags for social images , 2009, WSM@MM.

[8]  Patrick Onghena Statistical reasoning in psychology and education, 3rd edition - minium,ew, king,bm, bear,g , 1994 .

[9]  Nenghai Yu,et al.  Flickr distance , 2008, ACM Multimedia.

[10]  Ellen M. Voorhees,et al.  Retrieval evaluation with incomplete information , 2004, SIGIR '04.

[11]  Kai Song,et al.  Diversifying the image retrieval results , 2006, MM '06.

[12]  S. Robertson The probability ranking principle in IR , 1997 .

[13]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[14]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[15]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[16]  John D. Lafferty,et al.  A risk minimization framework for information retrieval , 2006, Inf. Process. Manag..

[17]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[18]  Xian-Sheng Hua,et al.  A joint appearance-spatial distance for kernel-based image categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Shuicheng Yan,et al.  Near-duplicate keyframe retrieval by nonrigid image matching , 2008, ACM Multimedia.

[20]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[21]  Chong-Wah Ngo,et al.  Scale-Rotation Invariant Pattern Entropy for Keypoint-Based Near-Duplicate Detection , 2009, IEEE Transactions on Image Processing.

[22]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.

[23]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Meng Wang,et al.  Social Image Search with Diverse Relevance Ranking , 2010, MMM.

[25]  Meng Wang,et al.  Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation , 2009, IEEE Transactions on Multimedia.

[26]  Kilian Q. Weinberger,et al.  Reliable tags using image similarity: mining specificity and expertise from large-scale multimedia databases , 2009, WSMC '09.

[27]  Wei-Ying Ma,et al.  Hierarchical clustering of WWW image search results using visual, textual and link information , 2004, MULTIMEDIA '04.

[28]  Dong Liu,et al.  Tag quality improvement for social images , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[29]  Shih-Fu Chang,et al.  To search or to label?: predicting the performance of search-based automatic image classifiers , 2006, MIR '06.

[30]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .

[31]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[32]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[33]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[34]  William Goffman,et al.  A searching procedure for information retrieval , 1964, Inf. Storage Retr..

[35]  Wei-Ying Ma,et al.  IGroup: web image search results clustering , 2006, MM '06.

[36]  Bin Wang,et al.  Large-Scale Duplicate Detection for Web Image Search , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[37]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.