Reverse Alexandrov-Fenchel inequalities for zonoids

The Alexandrov–Fenchel inequality bounds from below the square of the mixed volume V (K1,K2,K3, . . . ,Kn) of convex bodies K1, . . . ,Kn in R by the product of the mixed volumes V (K1,K1,K3, . . . ,Kn) and V (K2,K2,K3, . . . ,Kn). As a consequence, for integers α1, . . . , αm ∈ N with α1 + · · · + αm = n the product Vn(K1) α1 n · · ·Vn(Km) αm n of suitable powers of the volumes Vn(Ki) of the convex bodies Ki, i = 1, . . . ,m, is a lower bound for the mixed volume V (K1[α1], . . . ,Km[αm]), where αi is the multiplicity with which Ki appears in the mixed volume. It has been conjectured by Ulrich Betke and Wolfgang Weil that there is a reverse inequality, that is, a sharp upper bound for the mixed volume V (K1[α1], . . . ,Km[αm]) in terms of the product of the intrinsic volumes Vαi(Ki), for i = 1, . . . ,m. The case where m = 2, α1 = 1, α2 = n − 1 has recently been settled by the present authors (2020). The case where m = 3, α1 = α2 = 1, α3 = n− 2 has been treated by Artstein-Avidan, Florentin, Ostrover (2014) under the assumption that K2 is a zonoid and K3 is the Euclidean unit ball. The case where α2 = · · · = αm = 1, K1 is the unit ball and K2, . . . ,Km are zonoids has been considered by Hug, Schneider (2011). Here we substantially generalize these previous contributions, in cases where most of the bodies are zonoids, and thus we provide further evidence supporting the conjectured reverse Alexandrov–Fenchel inequality. The equality cases in all considered inequalities are characterized. More generally, stronger stability results are established as well.

[1]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[2]  W. Weil,et al.  Isoperimetric inequalities for the mixed area of plane convex sets , 1991 .

[3]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.

[4]  R. Schneider A stability estimate for the Aleksandrov-Fenchel inequality, with an application to mean curvature , 1990 .

[5]  M. Schmuckenschläger An Extremal Property of the Regular Simplex , 1998 .

[6]  Grigoris Paouris,et al.  On a quantitative reversal of Alexandrov’s inequality , 2018, Transactions of the American Mathematical Society.

[7]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[8]  F. Behrend Über einige Affininvarianten konvexer Bereiche , 1937 .

[9]  A reverse Minkowski-type inequality , 2019, 1909.00782.

[10]  Xu Wang A remark on the Alexandrov-Fenchel inequality , 2017, 1705.09933.

[11]  V. I. Diskant Stability of the solution of the Minkowski equation , 1973 .

[12]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[13]  Galyna V. Livshyts On a conjectural symmetric version of Ehrhard's inequality , 2021 .

[14]  Q. Merigot,et al.  One more proof of the Alexandrov–Fenchel inequality , 2019, Comptes Rendus Mathematique.

[15]  An Approximate Inverse Riesz-Sobolev Inequality , 2011, 1112.3715.

[16]  H. Groemer,et al.  On the Brunn-Minkowski theorem , 1988 .

[17]  R. Schneider On the Aleksandrov-Fenchel inequality for convex bodies. I , 1990 .

[18]  E. Lutwak,et al.  Volume Inequalities for Subspaces of L p , 2004 .

[19]  Keith Ball Shadows of convex bodies , 1989 .

[20]  R. Schneider,et al.  Reverse inequalities for zonoids and their application , 2011 .

[21]  Alexander Segal Remark on Stability of Brunn–Minkowski and Isoperimetric Inequalities for Convex Bodies , 2012 .

[22]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[23]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[24]  E. Lutwak,et al.  Lp John Ellipsoids , 2005 .

[26]  Franck Barthe,et al.  An extremal property of the mean width of the simplex , 1998 .

[27]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[28]  Ai-jun Li,et al.  Mean width inequalities for isotropic measures , 2012 .

[29]  A. Figalli,et al.  Quantitative stability for the Brunn-Minkowski inequality , 2014, 1502.06513.

[30]  A. Zvavitch,et al.  Wulff shapes and a characterization of simplices via a Bezout type inequality , 2018, 1801.02675.

[31]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[32]  E. Lutwak Selected Affine Isoperimetric Inequalities , 1993 .

[33]  Daniel Hug,et al.  Extremizers and stability of the Betke--Weil inequality , 2021 .

[34]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[35]  D. Hug,et al.  Strengthened volume inequalities for $L_p$ zonoids of even isotropic measures , 2016, Transactions of the American Mathematical Society.

[36]  Volume inequalities for isotropic measures , 2006, math/0607753.

[37]  Jian Xiao B\'ezout type inequality in convex geometry , 2017, 1704.00883.

[38]  B. Klartag,et al.  Dimensionality and the stability of the Brunn-Minkowski inequality , 2011, 1110.6584.

[39]  Yves Martinez-Maure A stability estimate for the Aleksandrov–Fenchel inequality under regularity assumptions , 2016 .

[40]  R. Handel,et al.  The extremals of Minkowski’s quadratic inequality , 2019, Duke Mathematical Journal.

[41]  Peter van Hintum,et al.  Sharp quantitative stability of the planar Brunn–Minkowski inequality , 2019, Journal of the European Mathematical Society.

[42]  Peter van Hintum,et al.  Sharp stability of Brunn–Minkowski for homothetic regions , 2019, Journal of the European Mathematical Society.

[43]  F. Barthe On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.

[44]  A. Figalli,et al.  A refined Brunn-Minkowski inequality for convex sets , 2009 .

[45]  S. Artstein-Avidan,et al.  REMARKS ABOUT MIXED DISCRIMINANTS AND VOLUMES , 2013, 1306.1315.

[46]  Vesa Julin,et al.  Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality , 2016, Calculus of Variations and Partial Differential Equations.

[47]  Ramon van Handel,et al.  Mixed volumes and the Bochner method , 2018, Proceedings of the American Mathematical Society.

[48]  Sharp Isoperimetric Inequalities for Affine Quermassintegrals , 2020, 2005.04769.

[49]  Silouanos Brazitikos,et al.  Vector-valued Maclaurin inequalities , 2021, 2102.05900.

[50]  Isotropic measures and stronger forms of the reverse isoperimetric inequality , 2014, 1410.4697.