Reverse Alexandrov-Fenchel inequalities for zonoids
暂无分享,去创建一个
[1] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[2] W. Weil,et al. Isoperimetric inequalities for the mixed area of plane convex sets , 1991 .
[3] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[4] R. Schneider. A stability estimate for the Aleksandrov-Fenchel inequality, with an application to mean curvature , 1990 .
[5] M. Schmuckenschläger. An Extremal Property of the Regular Simplex , 1998 .
[6] Grigoris Paouris,et al. On a quantitative reversal of Alexandrov’s inequality , 2018, Transactions of the American Mathematical Society.
[7] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[8] F. Behrend. Über einige Affininvarianten konvexer Bereiche , 1937 .
[9] A reverse Minkowski-type inequality , 2019, 1909.00782.
[10] Xu Wang. A remark on the Alexandrov-Fenchel inequality , 2017, 1705.09933.
[11] V. I. Diskant. Stability of the solution of the Minkowski equation , 1973 .
[12] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[13] Galyna V. Livshyts. On a conjectural symmetric version of Ehrhard's inequality , 2021 .
[14] Q. Merigot,et al. One more proof of the Alexandrov–Fenchel inequality , 2019, Comptes Rendus Mathematique.
[15] An Approximate Inverse Riesz-Sobolev Inequality , 2011, 1112.3715.
[16] H. Groemer,et al. On the Brunn-Minkowski theorem , 1988 .
[17] R. Schneider. On the Aleksandrov-Fenchel inequality for convex bodies. I , 1990 .
[18] E. Lutwak,et al. Volume Inequalities for Subspaces of L p , 2004 .
[19] Keith Ball. Shadows of convex bodies , 1989 .
[20] R. Schneider,et al. Reverse inequalities for zonoids and their application , 2011 .
[21] Alexander Segal. Remark on Stability of Brunn–Minkowski and Isoperimetric Inequalities for Convex Bodies , 2012 .
[22] J. Lindenstrauss,et al. Handbook of geometry of Banach spaces , 2001 .
[23] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[24] E. Lutwak,et al. Lp John Ellipsoids , 2005 .
[26] Franck Barthe,et al. An extremal property of the mean width of the simplex , 1998 .
[27] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[28] Ai-jun Li,et al. Mean width inequalities for isotropic measures , 2012 .
[29] A. Figalli,et al. Quantitative stability for the Brunn-Minkowski inequality , 2014, 1502.06513.
[30] A. Zvavitch,et al. Wulff shapes and a characterization of simplices via a Bezout type inequality , 2018, 1801.02675.
[31] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[32] E. Lutwak. Selected Affine Isoperimetric Inequalities , 1993 .
[33] Daniel Hug,et al. Extremizers and stability of the Betke--Weil inequality , 2021 .
[34] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[35] D. Hug,et al. Strengthened volume inequalities for $L_p$ zonoids of even isotropic measures , 2016, Transactions of the American Mathematical Society.
[36] Volume inequalities for isotropic measures , 2006, math/0607753.
[37] Jian Xiao. B\'ezout type inequality in convex geometry , 2017, 1704.00883.
[38] B. Klartag,et al. Dimensionality and the stability of the Brunn-Minkowski inequality , 2011, 1110.6584.
[39] Yves Martinez-Maure. A stability estimate for the Aleksandrov–Fenchel inequality under regularity assumptions , 2016 .
[40] R. Handel,et al. The extremals of Minkowski’s quadratic inequality , 2019, Duke Mathematical Journal.
[41] Peter van Hintum,et al. Sharp quantitative stability of the planar Brunn–Minkowski inequality , 2019, Journal of the European Mathematical Society.
[42] Peter van Hintum,et al. Sharp stability of Brunn–Minkowski for homothetic regions , 2019, Journal of the European Mathematical Society.
[43] F. Barthe. On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.
[44] A. Figalli,et al. A refined Brunn-Minkowski inequality for convex sets , 2009 .
[45] S. Artstein-Avidan,et al. REMARKS ABOUT MIXED DISCRIMINANTS AND VOLUMES , 2013, 1306.1315.
[46] Vesa Julin,et al. Robustness of the Gaussian concentration inequality and the Brunn–Minkowski inequality , 2016, Calculus of Variations and Partial Differential Equations.
[47] Ramon van Handel,et al. Mixed volumes and the Bochner method , 2018, Proceedings of the American Mathematical Society.
[48] Sharp Isoperimetric Inequalities for Affine Quermassintegrals , 2020, 2005.04769.
[49] Silouanos Brazitikos,et al. Vector-valued Maclaurin inequalities , 2021, 2102.05900.
[50] Isotropic measures and stronger forms of the reverse isoperimetric inequality , 2014, 1410.4697.