Quantum nonlinear optics — photon by photon

[1]  A. Rauschenbeutel,et al.  Nonlinear pi phase shift for single fiber-guided photons interacting with a resonator-enhanced atom , 2015 .

[2]  H. Ramachandran Annual Review of Cold Atoms and Molecules , 2014 .

[3]  Serge Rosenblum,et al.  All-optical routing of single photons by a one-atom switch controlled by a single photon , 2014, Science.

[4]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[5]  Norbert Kalb,et al.  A quantum gate between a flying optical photon and a single trapped atom , 2014, Nature.

[6]  Christian Junge,et al.  Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom , 2014, Nature Photonics.

[7]  H. Kimble,et al.  Atom–light interactions in photonic crystals , 2013, Nature Communications.

[8]  Alexander Y. Piggott,et al.  Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity , 2013, 1307.3601.

[9]  Stephan Dürr,et al.  Single-photon switch based on Rydberg blockade. , 2013, Physical review letters.

[10]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[11]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[12]  Shanhui Fan,et al.  Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle. , 2013, Physical review letters.

[13]  Andreas Reiserer,et al.  Nondestructive Detection of an Optical Photon , 2013, Science.

[14]  Alexey V. Gorshkov,et al.  Attractive photons in a quantum nonlinear medium , 2013, Nature.

[15]  M. Lukin,et al.  Single-photon nonlinear optics with graphene plasmons. , 2013, Physical review letters.

[16]  M. Lukin,et al.  All-Optical Switch and Transistor Gated by One Stored Photon , 2013, Science.

[17]  A. Kuzmich,et al.  Entanglement between light and an optical atomic excitation , 2013, Nature.

[18]  A. Majumdar,et al.  Third-order photon correlations from a quantum dot coupled to a photonic-crystal nanocavity , 2013, CLEO: 2013.

[19]  J. Feist,et al.  Coupling a Single Trapped Atom to a Nanoscale Optical Cavity , 2013, Science.

[20]  A. Rauschenbeutel,et al.  Fiber-optical switch controlled by a single atom. , 2013, Physical review letters.

[21]  J. Otterbach,et al.  Wigner crystallization of single photons in cold Rydberg ensembles. , 2013, Physical review letters.

[22]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[23]  J. Pritchard,et al.  Storage and control of optical photons using Rydberg polaritons. , 2012, Physical review letters.

[24]  J. Pritchard,et al.  Nonlinear optics using cold Rydberg atoms , 2012, 1205.4890.

[25]  Alexey V. Gorshkov,et al.  Quantum nonlinear optics with single photons enabled by strongly interacting atoms , 2012, Nature.

[26]  Oskar Painter,et al.  Optimized optomechanical crystal cavity with acoustic radiation shield , 2012, 1206.2099.

[27]  Y. O. Dudin,et al.  Strongly Interacting Rydberg Excitations of a Cold Atomic Gas , 2012, Science.

[28]  V. Gritsev,et al.  Scattering of massless particles in one-dimensional chiral channel , 2012, 1203.0451.

[29]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[30]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[31]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[32]  A. Badolato,et al.  Strongly correlated photons on a chip , 2011, Nature Photonics.

[33]  M. Lukin,et al.  Photon sorters and QND detectors using single photon emitters , 2010, 1007.3273.

[34]  A. Gaeta,et al.  Few-photon all-optical modulation in a photonic band-gap fiber. , 2011, Physical review letters.

[35]  V. Vuletic,et al.  Vacuum-Induced Transparency , 2011, Science.

[36]  T. Pohl,et al.  Nonlocal nonlinear optics in cold Rydberg gases. , 2011, Physical review letters.

[37]  Johannes Otterbach,et al.  Electromagnetically induced transparency with Rydberg atoms. , 2011, Physical review letters.

[38]  T. Wilk,et al.  Three-photon correlations in a strongly driven atom-cavity system. , 2011, Physical review letters.

[39]  M. Hennrich,et al.  Single atom as a mirror of an optical cavity. , 2011, Physical review letters.

[40]  M. Lukin,et al.  Photon-photon interactions via Rydberg blockade. , 2011, Physical review letters.

[41]  Christian Nölleke,et al.  A single-atom quantum memory , 2011, Nature.

[42]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[43]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[44]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[45]  M. Hartmann,et al.  Dissipation-induced correlations in one-dimensional bosonic systems , 2010, 1012.4618.

[46]  J. Pritchard,et al.  Cooperative atom-light interaction in a blockaded Rydberg ensemble. , 2010, Physical review letters.

[47]  Markus Aspelmeyer,et al.  Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.

[48]  S. Dawkins,et al.  Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. , 2009, Physical review letters.

[49]  Photon-number selective group delay in cavity induced transparency. , 2009, Physical review letters.

[50]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[51]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[52]  M. Lukin,et al.  Efficient all-optical switching using slow light within a hollow fiber. , 2009, Physical review letters.

[53]  I. Carusotto,et al.  Fermionized photons in an array of driven dissipative nonlinear cavities. , 2008, Physical review letters.

[54]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[55]  G. Rempe,et al.  Two-photon gateway in one-atom cavity quantum electrodynamics , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[56]  Technical University of Denmark,et al.  Electrical control of spontaneous emission and strong coupling for a single quantum dot , 2008, 0810.3010.

[57]  C. P. Sun,et al.  Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays , 2008, 0809.1279.

[58]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[59]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[60]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[61]  T. Puppe,et al.  Nonlinear spectroscopy of photons bound to one atom , 2008, 0803.2712.

[62]  S. Yelin,et al.  Single-photon nonlinearities using arrays of cold polar molecules , 2008, 0902.3964.

[63]  Klaus Mølmer,et al.  Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. , 2008, Physical review letters.

[64]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[65]  C. Kurtsiefer,et al.  Strong interaction between light and a single trapped atom without a cavity , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[66]  D. E. Chang,et al.  Crystallization of strongly interacting photons in a nonlinear optical fibre , 2007, 0712.1817.

[67]  Jaesuk Hwang,et al.  Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence , 2007, 0707.3398.

[68]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[69]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[70]  D. Stamper-Kurn,et al.  Cavity nonlinear optics at low photon numbers from collective atomic motion. , 2007, Physical review letters.

[71]  S. Fan,et al.  Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. , 2007, Physical review letters.

[72]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[73]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[74]  Andrew D. Greentree,et al.  Quantum phase transitions of light , 2006, cond-mat/0609050.

[75]  P. Grangier,et al.  Controlled Single-Photon Emission from a Single Trapped Two-Level Atom , 2005, Science.

[76]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[77]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[78]  G. Kurizki,et al.  Long-range interactions and entanglement of slow single-photon pulses , 2005, quant-ph/0503071.

[79]  M. S. Zubairy,et al.  Quantum microscopy using photon correlations , 2004 .

[80]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2003, Physical review letters.

[81]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[82]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[83]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[84]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[85]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[86]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[87]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical review letters.

[88]  J. Cirac,et al.  Dipole blockade and quantum information processing in mesoscopic atomic ensembles. , 2000, Physical review letters.

[89]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[90]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[91]  S. Huelga,et al.  Cavity-loss-induced generation of entangled atoms , 1998, quant-ph/9811003.

[92]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[93]  P. Drummond,et al.  Three-dimensional quantum solitons with parametric coupling , 1998 .

[94]  Robert L. Byer,et al.  Quasi-Phasematched Nonlinear Interactions and Devices , 1997 .

[95]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[96]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[97]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[98]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[99]  R. Shelby,et al.  Quantum solitons in optical fibres , 1993, Nature.

[100]  Deutsch,et al.  Two-photon bound states: The diphoton bullet in dispersive self-focusing media. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[101]  Deutsch,et al.  Two-photon bound state in self-focusing media. , 1991, Physical review letters.

[102]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[103]  Lai,et al.  Quantum theory of solitons in optical fibers. II. Exact solution. , 1989, Physical review. A, General physics.

[104]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[105]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[106]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[107]  P. Franken,et al.  Optical Harmonics and Nonlinear Phenomena , 1963 .

[108]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[109]  Barrington. Moore The Outlook , 1956 .