Deriving rankings from incomplete preference information: A comparison of different approaches

Volume-based methods for decision making under incomplete information like the SMAA family of methods provide rich probabilistic information to support decision making. However, they usually do not directly generate a unique ranking of alternatives. Methods to create such a unique ranking from incomplete preference information typically select one parameter vector, either by mathematical programming approaches or by averaging, and then apply a preference model using this parameter vector. In the present paper, we develop several models to infer a complete ranking or a complete preorder of alternatives directly from the probabilistic information provided by volume-based methods without singling out a specific parameter vector. We compare the results obtained by these models to those obtained with a single parameter approach in a computational study. Results indicate small, but significant differences in the performance of methods, as well as in the probability that additional preference information might worsen, rather than improve, the results.

[1]  Philippe Fortemps,et al.  ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements , 2010, Eur. J. Oper. Res..

[2]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[3]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[4]  Martin Weber Decision Making with Incomplete Information , 1987 .

[5]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[6]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[7]  Luis C. Dias,et al.  Simple procedures of choice in multicriteria problems without precise information about the alternatives' values , 2010, Comput. Oper. Res..

[8]  Rudolf Vetschera,et al.  Parameters of social preference functions: measurement and external validity , 2013 .

[9]  Rakesh K. Sarin,et al.  Ranking with Partial Information: A Method and an Application , 1985, Oper. Res..

[10]  R. Soland,et al.  Multiple‐attribute decision making with partial information: The comparative hypervolume criterion , 1978 .

[11]  R. Y. Rubinstein Generating random vectors uniformly distributed inside and on the surface of different regions , 1982 .

[12]  Luis C. Dias,et al.  Additive aggregation with variable interdependent parameters: the VIP analysis software , 2000, J. Oper. Res. Soc..

[13]  Christoph Graf,et al.  The effect of information on the quality of decisions , 2014, Central Eur. J. Oper. Res..

[14]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..

[15]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[16]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[17]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[18]  Kwangtae Park,et al.  Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information , 2001, Eur. J. Oper. Res..

[19]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..

[20]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[21]  J. Figueira,et al.  A survey on stochastic multicriteria acceptability analysis methods , 2008 .

[22]  Kyung S. Park,et al.  Tools for interactive multiattribute decisionmaking with incompletely identified information , 1997 .

[23]  Shinhong Kim,et al.  An Extended Model for Establishing Dominance in Multiattribute Decisionmaking , 1996 .

[24]  Tommi Tervonen,et al.  Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..

[25]  H. A. Eiselt,et al.  The use of domains in multicriteria decision making , 1992 .

[26]  Rudolf Vetschera,et al.  Learning about preferences in electronic negotiations - A volume-based measurement method , 2009, Eur. J. Oper. Res..

[27]  Michel Beuthe,et al.  Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..

[28]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .

[29]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[30]  Z. Kmietowicz,et al.  Decision theory, linear partial information and statistical dominance , 1984 .

[31]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[32]  Tommi Tervonen,et al.  Entropy-optimal weight constraint elicitation with additive multi-attribute utility models , 2016 .

[33]  Tommi Tervonen,et al.  Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..