Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays

[1]  C. Pan,et al.  Synthesis of carbon-modified TiO2 nanotube arrays for enhancing the photocatalytic activity under the visible light , 2010 .

[2]  C. A. Chavez,et al.  Pt nanoparticles on titania nanotubes prepared by vapor-phase impregnation–decomposition method , 2010 .

[3]  W. Bu,et al.  TiO2 nanoparticles incorporated with CuInS2 clusters: preparation and photocatalytic activity for degradation of 4-nitrophenol , 2009 .

[4]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[5]  Shengyou Huang,et al.  Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays , 2009 .

[6]  Jun Chen,et al.  Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application , 2009 .

[7]  Xue-ming Ma,et al.  The effect of milling atmospheres on photocatalytic property of Fe-doped TiO2 synthesized by mechanical alloying , 2009 .

[8]  Y. G. Lee,et al.  Preparation of Sn–3.5Ag nano-solder by supernatant process , 2009 .

[9]  Guohua Chen,et al.  Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. , 2009, Environmental science & technology.

[10]  Huimin Zhao,et al.  Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity , 2008 .

[11]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[12]  Q. Xie,et al.  Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation , 2007 .

[13]  C. Grimes,et al.  Fabrication and Catalytic Properties of Co−Ag−Pt Nanoparticle-Decorated Titania Nanotube Arrays , 2007 .

[14]  Lixia Yang,et al.  Size-controllable fabrication of noble metal nanonets using a TiO2 template. , 2006, Inorganic chemistry.

[15]  D. Mazyck,et al.  Microwave-Assisted Preparation of TiO2/Activated Carbon Composite Photocatalyst for Removal of Methanol in Humid Air Streams , 2006 .

[16]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[17]  Xianwei Li,et al.  SOL–GEL SYNTHESIS OF TIO2 NANOPARTICLES AND PHOTOCATALYTIC DEGRADATION OF METHYL ORANGE IN AQUEOUS TIO2 SUSPENSIONS , 2006 .

[18]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[19]  O. Wiest,et al.  Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds. , 2003, Environmental science & technology.

[20]  C. Fan,et al.  Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. , 2002, Water research.

[21]  M. Hepel,et al.  Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes , 2001 .

[22]  I. Kaiser,et al.  The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta) , 2001 .

[23]  N. Bunce,et al.  Electrochemical treatment of 2,4,6-trinitrotoluene and related compounds. , 2001, Environmental science & technology.

[24]  R. Klenk,et al.  Efficient thin-film solar cells prepared by a sequential process , 1998 .

[25]  A. Yamamoto,et al.  Preparation of CuInS2 films with sufficient sulfur content and excellent morphology by one-step electrodeposition , 1997 .

[26]  Kentaro Ito,et al.  Preparation and properties of CuInS2 thin films , 1994 .

[27]  S. Hotchandani,et al.  Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol , 1993 .

[28]  A. Gupta,et al.  CuInS2 films prepared by sulfurization of electroless deposited CuIn alloy , 1988 .

[29]  K. Chopra,et al.  Fabrication and analysis of all-sprayed CuInS2/ZnO solar cells , 1987 .

[30]  G. K. Padam,et al.  Preparation and characterization of chemically deposited CuInS2 thin films , 1986 .

[31]  Masashi Tanaka,et al.  Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder , 1985 .

[32]  Yasunori Yamamoto,et al.  Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder , 1985 .

[33]  D. Ollis Contaminant degradation in water. , 1985, Environmental science & technology.

[34]  D. Cahen,et al.  Electrodeposition of CuInS layers and their photoelectrochemical characterization , 1984 .

[35]  Charles W. Smith,et al.  Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu‐In films to an H2S atmosphere , 1979 .

[36]  L. Y. Sun,et al.  Absorption coefficient measurements for vacuum‐deposited Cu‐ternary thin films , 1978 .

[37]  Guohua Chen,et al.  Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO2/Ti electrode , 2004 .

[38]  A. Rakotondrainibe,et al.  Preparation of Pt–Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell , 2004 .

[39]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[40]  H. Hwang,et al.  The defect structure of CuInS2. part I: Intrinsic defects , 1989 .