DISSECTING MAGNETAR VARIABILITY WITH BAYESIAN HIERARCHICAL MODELS

Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.

[1]  C. Guidorzi,et al.  MEPSA: A flexible peak search algorithm designed for uniformly spaced time series , 2015, Astron. Comput..

[2]  C. Guidorzi,et al.  Gamma-ray burst engines may have no memory , 2014, 1412.0404.

[3]  P. N. Bhat,et al.  Fermi gamma-ray burst monitor detector performance at very high counting rates , 2014 .

[4]  Y. Levin,et al.  THERMOPLASTIC WAVES IN MAGNETARS , 2014, 1406.4850.

[5]  A. J. van der Horst,et al.  TIME RESOLVED SPECTROSCOPY OF SGR J1550−5418 BURSTS DETECTED WITH FERMI/GAMMA-RAY BURST MONITOR , 2014, 1402.6015.

[6]  D. Viganò,et al.  3XMM J185246.6+003317: ANOTHER LOW MAGNETIC FIELD MAGNETAR , 2013, 1311.3091.

[7]  M. Aschwanden A Macroscopic Description of Self-Organized Criticality Systems and Astrophysical Applications , 2013 .

[8]  Toshifumi Shimizu,et al.  MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC SCALING LAWS AND THERMAL ENERGIES , 2013, 1308.5198.

[9]  M. Aschwanden Self-Organized Criticality Systems , 2013 .

[10]  Valerie Connaughton,et al.  Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM , 2012, 1211.6592.

[11]  D. Hogg,et al.  PROBABILISTIC CATALOGS FOR CROWDED STELLAR FIELDS , 2012, 1211.5805.

[12]  Markus J. Aschwanden,et al.  THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH? , 2012, 1208.1527.

[13]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.

[14]  P. Kaaret,et al.  BURST FLUENCE DISTRIBUTIONS OF SOFT GAMMA REPEATERS 1806−20 AND 1900+14 IN THE ROSSI X-RAY TIMING EXPLORER PCA ERA , 2012 .

[15]  A. J. van der Horst,et al.  DETECTION OF SPECTRAL EVOLUTION IN THE BURSTS EMITTED DURING THE 2008–2009 ACTIVE EPISODE OF SGR J1550−5418 , 2012, 1206.4915.

[16]  V. Kaspi,et al.  POST-OUTBURST X-RAY FLUX AND TIMING EVOLUTION OF SWIFT J1822.3−1606 , 2012, 1204.1034.

[17]  N. Gehrels,et al.  A NEW LOW MAGNETIC FIELD MAGNETAR: THE 2011 OUTBURST OF SWIFT J1822.3−1606 , 2012, 1203.6449.

[18]  A. J. van der Horst,et al.  SGR J1550−5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY , 2012, 1202.3157.

[19]  V. Kaspi,et al.  RXTE OBSERVATIONS OF ANOMALOUS X-RAY PULSAR 1E 1547.0−5408 DURING AND AFTER ITS 2008 AND 2009 OUTBURSTS , 2012, 1201.2668.

[20]  M. Aschwanden A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system , 2011, 1112.4859.

[21]  V. Kaspi,et al.  THE 2009 OUTBURST OF MAGNETAR 1E 1547–5408: PERSISTENT RADIATIVE AND BURST PROPERTIES , 2011, 1106.5445.

[22]  S. Mereghetti The multi-wavelength properties of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters , 2011 .

[23]  R. Preece,et al.  UNIFICATION OF PULSES IN LONG AND SHORT GAMMA-RAY BURSTS: EVIDENCE FROM PULSE PROPERTIES AND THEIR CORRELATIONS , 2011, 1103.5434.

[24]  M. Aschwanden,et al.  Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe , 2011 .

[25]  C. Kouveliotou,et al.  A Low-Magnetic-Field Soft Gamma Repeater , 2010, Science.

[26]  P. N. Bhat,et al.  First results on terrestrial gamma ray flashes from the Fermi Gamma‐ray Burst Monitor , 2010 .

[27]  L. Angelini,et al.  The 2008 October Swift detection of X-ray bursts/outburst from the transient SGR-like AXP 1E 1547.0-5408 , 2010, 1006.2950.

[28]  R. Mignani,et al.  Early X-ray and optical observations of the soft gamma-ray repeater SGR 0418+5729 , 2010, 1002.3506.

[29]  Jonathan Grindlay,et al.  DASCH DISCOVERY OF LARGE AMPLITUDE ∼10–100 YEAR VARIABILITY IN K GIANTS , 2010, 1001.1395.

[30]  Brendon J. Brewer,et al.  Diffusive nested sampling , 2009, Stat. Comput..

[31]  Nicolas Produit,et al.  SGR-like flaring activity of the anomalous X-ray pulsar 1E 1547.0-5408 , 2009, 0912.0290.

[32]  A. J. van der Horst,et al.  DISCOVERY OF A NEW SOFT GAMMA REPEATER: SGR J0418 + 5729 , 2009, 0911.5544.

[33]  A. J. van der Horst,et al.  MAGNETAR TWISTS: FERMI/GAMMA-RAY BURST MONITOR DETECTION OF SGR J1550–5418 , 2009, 1001.2644.

[34]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[35]  김근배,et al.  STRONG BURSTS FROM THE ANOMALOUS X-RAY PULSAR 1E 1547.0−5408 OBSERVED WITH THE INTEGRAL/SPI ANTI-COINCIDENCE SHIELD , 2009, 0903.1974.

[36]  A. Watts,et al.  Constraints on neutron star crusts from oscillations in giant flares. , 2009, Physical review letters.

[37]  K. Glampedakis,et al.  Superfluid signatures in magnetar seismology , 2008, 0812.2417.

[38]  T. Sakamoto,et al.  A Swift Gaze into the 2006 March 29 Burst Forest of SGR 1900+14 , 2008, 0805.3919.

[39]  Y. Levin,et al.  Hydromagnetic waves in a superfluid neutron star with strong vortex pinning , 2008, 0803.0276.

[40]  M. Aschwanden,et al.  Solar Flare Geometries. II. The Volume Fractal Dimension , 2008 .

[41]  B. M. Gaensler,et al.  The Compact X-Ray Source 1E 1547.0–5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant , 2007, 0706.1054.

[42]  A. Piro Shear Waves and Giant-Flare Oscillations from Soft Gamma-Ray Repeaters , 2005, astro-ph/0510578.

[43]  C. Thompson,et al.  Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates , 2004, astro-ph/0406133.

[44]  D. Kocevski,et al.  Search for Relativistic Curvature Effects in Gamma-Ray Burst Pulses , 2003, astro-ph/0303556.

[45]  M. Lyutikov Explosive reconnection in magnetars , 2003, astro-ph/0303384.

[46]  P. B. Jones Nature of Fault Planes in Solid Neutron Star Matter , 2002, astro-ph/0210207.

[47]  D. Watson,et al.  Temporal properties of gamma-ray bursts as signatures of jets from the central engine , 2001, astro-ph/0112515.

[48]  P. Haensel,et al.  A unified equation of state of dense matter and neutron star structure , 2001, astro-ph/0111092.

[49]  M. Lyutikov,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[50]  C. Kouveliotou,et al.  Statistical Properties of SGR 1806–20 Bursts , 2000, The Astrophysical journal.

[51]  C. Kouveliotou,et al.  Statistical Properties of SGR 1900+14 Bursts , 1999, The Astrophysical journal.

[52]  E. Mazets,et al.  Unusual Burst Emission from the New Soft Gamma Repeater SGR 1627–41 , 1999 .

[53]  E.P.Mazets,et al.  Unusual Burst Emission from the New Soft Gamma Repeater SGR1627-41 , 1999, astro-ph/9902292.

[54]  K. Hurley,et al.  An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20 , 1998, Nature.

[55]  J. Scargle,et al.  Attributes of GRB pulses: Bayesian blocks analysis of TTE data; a microburst in GRB920229 , 1997, astro-ph/9712016.

[56]  Hui Li,et al.  Log-normal Distributions in Gamma-Ray Burst Time Histories , 1996, astro-ph/9607131.

[57]  Gerald J. Fishman,et al.  Attributes of Pulses in Long Bright Gamma-Ray Bursts , 1996 .

[58]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[59]  Andreas Reisenegger,et al.  Magnetic field decay in isolated neutron stars , 1992 .

[60]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[61]  H. Iyetomi,et al.  The shear modulus of the neutron star crust and nonradial oscillations of neutron stars , 1991 .

[62]  T. Markert,et al.  X-ray emission from supernova remnants near gamma-ray sources , 1981 .

[63]  M. Klis,et al.  Overview of QPOs in neutron-star low-mass X-ray binaries , 2006 .

[64]  J. Heyl,et al.  A QED Model for the Origin of Bursts from Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2005 .

[65]  Accepted for publication in The Astrophysical Journal , 2001 .

[66]  R. Guyer,et al.  Earthquake-like behaviour of soft γ-ray repeaters , 1996, Nature.