Possibilities of the particle finite element method for fluid–soil–structure interaction problems

We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid–soil–structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid–solid and solid–solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

[1]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[2]  O. C. Zienkiewicz,et al.  Flow of solids during forming and extrusion: Some aspects of numerical solutions , 1978 .

[3]  Zeki Demirbilek,et al.  Journal of Waterway, Port, Coastal, and Ocean Engineering , 1983 .

[4]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[5]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[6]  Gary Parker,et al.  A new vectorial bedload formulation and its application to the time evolution of straight river channels , 1994, Journal of Fluid Mechanics.

[7]  Eugenio Oñate,et al.  Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems , 1998 .

[8]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[9]  Eugenio Oñate,et al.  A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation , 2001 .

[10]  Hermann M. Fritz,et al.  Lituya Bay Case Rockslide Impact and Wave Run-up , 2001 .

[11]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[12]  Eugenio Oñate,et al.  Polyhedrization of an arbitrary 3D point set , 2003 .

[13]  Eugenio Oñate,et al.  A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .

[14]  E. Onate,et al.  An Unstructured Finite Element Solver for Ship Hydrodynamics Problems , 2003 .

[15]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[16]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[17]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[18]  Robin Fell,et al.  Investigation of Rate of Erosion of Soils in Embankment Dams , 2004 .

[19]  Willi H. Hager,et al.  Near Field Characteristics of Landslide Generated Impulse Waves , 2004 .

[20]  Eugenio Oñate,et al.  Possibilities of finite calculus in computational mechanics , 2004 .

[21]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[22]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[23]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[24]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[25]  Eugenio Oñate,et al.  Particle finite element method in fluid-mechanics including thermal convection-diffusion , 2005 .

[26]  Eugenio Oñate,et al.  Fluid-structure interaction using the particle finite element method , 2006 .

[27]  Ramon Codina,et al.  Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations , 2006 .

[28]  Eugenio Oñate,et al.  Modeling bed erosion in free surface flows by the particle finite element method , 2006 .

[29]  E. Oñate,et al.  FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers , 2006 .

[30]  Eugenio Oñate,et al.  Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches , 2006 .

[31]  Tayfun E. Tezduyar,et al.  Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview , 2007 .

[32]  Eugenio Oñate,et al.  The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surface flows and fluid–object interactions , 2007 .

[33]  Rainald Löhner,et al.  Simulation of flows with violent free surface motion and moving objects using unstructured grids , 2007 .

[34]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[35]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[36]  Antonia Larese,et al.  Validation of the particle finite element method (PFEM) for simulation of free surface flows , 2008 .

[37]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[38]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[39]  R. Codina,et al.  The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems , 2009 .

[40]  Santiago Badia,et al.  On a multiscale approach to the transient Stokes problem: Dynamic subscales and anisotropic space-time discretization , 2009, Appl. Math. Comput..

[41]  Eugenio Oñate,et al.  Multi-fluid flows with the Particle Finite Element Method , 2009 .

[42]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[43]  Eugenio Oñate,et al.  Melting and spread of polymers in fire with the particle finite element method , 2010 .

[44]  Rafael Morán Moya,et al.  Modelación numérica de deslizamientos de ladera en embalses mediante el Método de Partículas y Elementos Finitos (PFEM) , 2012 .

[45]  Eugenio Oñate,et al.  Modeling of ground excavation with the particle finite element method , 2010 .

[46]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[47]  E. Oñate,et al.  Numerical modeling of landslides in reservoirs using the Particle Finite Element Method (PFEM) , 2011 .

[48]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .