Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry

In this study, slow pyrolysis characteristics of olive oil pomace were investigated by using thermogravimetric analysis coupled with mass spectrometry. The major pyrolysis products identified are H2, CH4, CO, CO2. Their evolution profiles with respect to temperature enable a realistic evaluation of weight loss results. The chemical structure of the olive oil pomace was analyzed using FTIR. Thermogravimetric analysis results have been utilized to determine kinetic parameters by using model fitting (Coats Redfern method), model free (ASTM E698, Flynn–Wall–Ozawa, Friedman methods) and nonlinear regression analysis approaches. Comparative evaluation of the kinetic results indicate that the multivariate regression analysis is an appropriate method to derive kinetic models which give reliable results for the whole temperature range especially in multi-step reactions.

[1]  Fred Shafizadeh,et al.  Introduction to pyrolysis of biomass , 1982 .

[2]  Li Sun,et al.  Study on Biomass Pyrolysis Kinetics , 2006 .

[3]  Emine Malkoc,et al.  Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. , 2009, Bioresource technology.

[4]  Sergey Vyazovkin,et al.  Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids , 1996, J. Chem. Inf. Comput. Sci..

[5]  Alice Mija,et al.  Integral, differential and advanced isoconversional methods: Complex mechanisms and isothermal predicted conversion–time curves , 2009 .

[6]  Qunwu Huang,et al.  Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis , 2006 .

[7]  S. Materazzi Mass Spectrometry Coupled to Thermogravimetry (TG-MS) for Evolved Gas Characterization: A Review. , 1998 .

[8]  M. Abbasi,et al.  Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA , 2008 .

[9]  Ayhan Demirbas,et al.  Mechanisms of liquefaction and pyrolysis reactions of biomass , 2000 .

[10]  M. Sivasubramanian,et al.  Integral approximations for nonisothermal kinetics , 1987 .

[11]  M. Antal Effects of reactor severity on the gas-phase pyrolysis of cellulose- and kraft lignin-derived volatile matter , 1983 .

[12]  B. J. Collier,et al.  Kinetics modeling of dynamic pyrolysis of bagasse fibers. , 2011, Bioresource technology.

[13]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[14]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[15]  James E. House,et al.  Principles of Chemical Kinetics. , 2015, Methods of biochemical analysis.

[16]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[17]  Joseph H. Flynn,et al.  General Treatment of the Thermogravimetry of Polymers. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[18]  K. Ninan Kinetics of solid state thermal decomposition reactions , 1989 .

[19]  Michael Jerry Antal,et al.  Kinetic modeling of biomass pyrolysis , 1997 .

[20]  C. Blasi,et al.  Devolatilization and Combustion Kinetics of Quercus cerris Bark , 2007 .

[21]  Peter McKendry,et al.  Energy production from biomass (Part 1): Overview of biomass. , 2002, Bioresource technology.

[22]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[23]  Øyvind Skreiberg,et al.  TGA and macro-TGA characterisation of biomass fuels and fuel mixtures , 2011 .

[24]  R. Alén,et al.  Formation of the main degradation compound groups from wood and its components during pyrolysis , 1996 .

[25]  S. Ledakowicz,et al.  Pyrolysis kinetics of chitin by non-isothermal thermogravimetry , 2005 .

[26]  D. Mohan,et al.  Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review , 2006 .

[27]  David L. Urban,et al.  Study of the kinetics of sewage sludge pyrolysis using DSC and TGA , 1982 .

[28]  G. N. Richards,et al.  INFLUENCE OF METAL IONS ON VOLATILE PRODUCTS OF PYROLYSIS OF WOOD , 1989 .

[29]  A. Espina,et al.  Model-free kinetics applied to sugarcane bagasse combustion , 2006 .

[30]  Vittorio Maniezzo,et al.  A decision support system for urban waste management , 1998, Eur. J. Oper. Res..

[31]  V. Slovák,et al.  Pitch pyrolysis kinetics from single TG curve , 2004 .

[32]  A. Bridgwater Review of fast pyrolysis of biomass and product upgrading , 2012 .

[33]  E. Mészáros,et al.  Thermogravimetric and Reaction Kinetic Analysis of Biomass Samples from an Energy Plantation , 2004 .

[34]  Bo Björkman,et al.  Combustion of plastics contained in electric and electronic scrap , 1998 .

[35]  Sp Babu Thermal gasification of biomass technology developments: End of task report for 1992 to 1994 , 1995 .

[36]  Angela N. García,et al.  Thermogravimetric kinetic study of the pyrolysis of municipal solid waste , 1995 .

[37]  H. Teng,et al.  Thermogravimetric analysis on global mass loss kinetics of rice hull pyrolysis , 1997 .

[38]  Henrik Thunman,et al.  Composition of Volatile Gases and Thermochemical Properties of Wood for Modeling of Fixed or Fluidized Beds , 2001 .

[39]  A. Galwey Perennial problems and promising prospects in the kinetic analysis of nonisothermal rate data , 2003 .

[40]  N. Papayannakos,et al.  Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects , 1991 .

[41]  Sang Shin Park,et al.  Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. , 2010 .

[42]  D. Radlein,et al.  Pretreatment of poplar wood for fast pyrolysis: rate of cation removal , 2001 .

[43]  A. Lua,et al.  Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. , 2003, Journal of colloid and interface science.

[44]  Benjamin L. Legendre,et al.  Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies , 2011 .

[45]  M. Radetzki What will happen to the producer prices for fossil fuels if Kyoto is implemented , 2002 .

[46]  Luis Puigjaner,et al.  Kinetics of Biomass Pyrolysis: a Reformulated Three-Parallel-Reactions Model , 2003 .

[47]  A. Barneto,et al.  Simulation of the thermogravimetry analysis of three non-wood pulps. , 2010, Bioresource technology.

[48]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[49]  Wolter Prins,et al.  Biomass Pyrolysis in a Fluidized Bed Reactor. Part 1: Literature Review and Model Simulations , 2005 .

[50]  J. Villaseñor,et al.  Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. , 2012, Bioresource technology.

[51]  F. Okieimen,et al.  Utilisation of maleinized rubber seed oil and its alkyd resin as binders in water-borne coatings , 2003 .

[52]  A. F. Roberts A review of kinetics data for the pyrolysis of wood and related substances , 1970 .

[53]  A. Gómez-Barea,et al.  Modeling of biomass gasification in fluidized bed , 2010 .

[54]  M. F. Pouet,et al.  Urban wastewater treatment by electrocoagulation and flotation , 1995 .

[55]  Tiziano Faravelli,et al.  Chemical Kinetics of Biomass Pyrolysis , 2008 .

[56]  Shubin Wu,et al.  The structural and thermal characteristics of wheat straw hemicellulose , 2010 .

[57]  G. Sakellaropoulos,et al.  Pyrolysis kinetics and combustion characteristics of waste recovered fuels , 2009 .

[58]  Laihong Shen,et al.  Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds , 2012 .

[59]  H. Ipek,et al.  The investigation of grinding kinetics of power plant solid fossil fuel in ball mill , 2010 .

[60]  Ke-fu Chen,et al.  Kinetic study on pyrolysis of tobacco residues from the cigarette industry , 2013 .

[61]  S. Gunasekaran,et al.  FTIR spectra and mechanical strength analysis of some selected rubber derivatives. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[62]  A. Jensen,et al.  Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry , 2001 .

[63]  P. Simon,et al.  IISCONVERSIONAL METHODS fundamentals, meaning and application , 2004 .

[64]  J. Encinar,et al.  Pyrolysis of Almond Shells. Energy Applications of Fractions , 2005 .

[65]  V. Calado,et al.  Thermal analysis of less common lignocellulose fibers , 2008 .

[66]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[67]  E. Wang,et al.  Mechanism and kinetics of thermal decomposition of 5-benzylsulfanyl-2-amino-1,3,4-thiadiazole , 2005 .

[68]  Hsi-Jen Chen,et al.  Methods for Determining the Kinetic Parameters from Nonisothermal Thermogravimetry: A Comparison of Reliability , 2004 .

[69]  L. Nowicki,et al.  KINETIC ANALYSIS OF THERMOGRAVIMETRIC DATA COLLECTED FROM BIGGER SAMPLES , 2012 .

[70]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[71]  K. Khilar,et al.  Influence of mineral matter on biomass pyrolysis characteristics , 1995 .