INFERRED INITIAL 26Al/27Al RATIOS IN PRESOLAR STARDUST GRAINS FROM SUPERNOVAE ARE HIGHER THAN PREVIOUSLY ESTIMATED

We performed an in-depth exploration of the Al–Mg system for presolar graphite, SiC, and Si3N4 grains found to contain large excesses of 26Mg, indicative of the initial presence of live 26Al. Ninety of the more than 450 presolar grains processed in this study contain well-correlated δ 26 Mg / 24 Mg ?> and 27Al/24Mg ratios, derived from Nano-scale Secondary Ion Mass Spectrometer depth profiles, whose isochron-like regression lines yield inferred initial 26 Al / 27 Al ?> ratios that, on average, are ∼1.5–2 times larger than the ratios previously reported for the grains. The majority of presolar graphite and SiC grains are heavily affected by Al contamination, resulting in large negative δ 26 Mg / 24 Mg ?> intercepts of the isochron lines. Al contamination is potentially due to etching of the grains’ surfaces and subsequent capture of dissolved Al during the acid dissolution of their meteorite host rocks. From the isochron fits, the magnitude of Al contamination was quantified for each grain. The amount of Al contamination on each grain was found to be random and independent of grain size, following a uniform distribution with an upper bound at 59% contamination. The Al contamination causes conventional whole-grain estimates to underpredict the initial 26 Al / 27 Al ?> ratios. The presolar grains with the highest 26 Al / 27 Al ?> ratios are from Type II supernovae whose isochron-derived initial 26 Al / 27 Al ?> ratios greatly exceed those predicted in the He/C and He/N zones of SN models.

[1]  Chris L. Fryer,et al.  44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion , 2015, Science.

[2]  R. Gallino,et al.  SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE , 2015 .

[3]  Wei Wang,et al.  SN2014J gamma rays from the 56Ni decay chain , 2014, 1409.5477.

[4]  L. Nittler,et al.  NanoSIMS, TEM, AND XANES STUDIES OF A UNIQUE PRESOLAR SUPERNOVA GRAPHITE GRAIN , 2014, 1406.7207.

[5]  R. Gallino,et al.  Presolar graphite from the Murchison meteorite: An isotopic study , 2014 .

[6]  Chris L. Fryer,et al.  Asymmetries in Core Collapse Supernovae Revealed by Maps of Radioactive Titanium , 2014 .

[7]  E. Zinner 1.4 – Presolar Grains , 2014 .

[8]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[9]  P. Hoppe,et al.  EVIDENCE FOR RADIOGENIC SULFUR-32 IN TYPE AB PRESOLAR SILICON CARBIDE GRAINS? , 2013, 1310.0485.

[10]  R. Gallino,et al.  Multi-element isotopic analyses of presolar graphite grains from Orgueil , 2013 .

[11]  F. Timmes,et al.  SILICON CARBIDE GRAINS OF TYPE C PROVIDE EVIDENCE FOR THE PRODUCTION OF THE UNSTABLE ISOTOPE 32Si IN SUPERNOVAE , 2013, 1306.3670.

[12]  E. Zinner,et al.  ISOCHRONS IN PRESOLAR GRAPHITE GRAINS FROM ORGUEIL , 2013 .

[13]  E. Groopman,et al.  C, N, AND O ISOTOPIC HETEROGENEITIES IN LOW-DENSITY SUPERNOVA GRAPHITE GRAINS FROM ORGUEIL , 2012, 1405.7557.

[14]  R. Diehl,et al.  Astronomy with Radioactivities , 2012, Publications of the Astronomical Society of Australia.

[15]  Chris L. Fryer,et al.  CONVECTIVE–REACTIVE PROTON–12C COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS , 2010, 1002.2241.

[16]  P. Hoppe,et al.  NanoSIMS STUDIES OF SMALL PRESOLAR SiC GRAINS: NEW INSIGHTS INTO SUPERNOVA NUCLEOSYNTHESIS, CHEMISTRY, AND DUST FORMATION , 2010 .

[17]  R. Clayton,et al.  EXTINCT 93Zr IN SINGLE PRESOLAR SiC GRAINS FROM LOW MASS ASYMPTOTIC GIANT BRANCH STARS AND CONDENSATION FROM Zr-DEPLETED GAS , 2010 .

[18]  Yangting Lin,et al.  ISOTOPIC ANALYSIS OF SUPERNOVA SiC AND Si3N4 GRAINS FROM THE QINGZHEN (EH3) CHONDRITE , 2010 .

[19]  B. Meyer,et al.  Stellar sources of the short-lived radionuclides in the early solar system , 2009 .

[20]  R. Gallino,et al.  Iron and Nickel Isotopic Ratios in Presolar SiC Grains , 2008 .

[21]  Y. Amelin,et al.  26 Al- 26 Mg and 207 Pb- 206 Pb systematics of Allende CAIs: Canonical solar initial 26 Al/ 27 Al ratio reinstated , 2008 .

[22]  Aaron L. Stancik,et al.  A simple asymmetric lineshape for fitting infrared absorption spectra , 2008 .

[23]  P. Hoppe,et al.  Aluminum-, Calcium- and Titanium-rich Oxide Stardust in Ordinary Chondrite Meteorites , 2008, 0804.2866.

[24]  S. Amari SODIUM-22 FROM SUPERNOVAE: A METEORITE CONNECTION , 2008 .

[25]  P. Hoppe,et al.  NanoSIMS isotopic analysis of small presolar grains: Search for Si3N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains , 2007 .

[26]  R. Diehl,et al.  Gamma rays from cosmic radioactivities , 2007 .

[27]  G. Weidenspointner,et al.  SPI observations of the diffuse ^60Fe emission in the Galaxy , 2007, 0704.3895.

[28]  T. Maruoka,et al.  Isotopic analysis of presolar graphite grains from Orgueil , 2006 .

[29]  Iap,et al.  The Signature of 44Ti in Cassiopeia A Revealed by IBIS/ISGRI on INTEGRAL , 2006, astro-ph/0606736.

[30]  P. Hoppe,et al.  Oxygen, magnesium and chromium isotopic ratios of presolar spinel grains , 2005 .

[31]  Ann N Nguyen,et al.  Discovery of Ancient Silicate Stardust in a Meteorite , 2004, Science.

[32]  A. Davis,et al.  Extinct Technetium in Silicon Carbide Stardust Grains: Implications for Stellar Nucleosynthesis , 2004, Science.

[33]  Scott Messenger,et al.  Pristine presolar silicon carbide , 2003 .

[34]  F. Stadermann,et al.  Samples of Stars Beyond the Solar System: Silicate Grains in Interplanetary Dust , 2003, Science.

[35]  Titus J. Galama,et al.  Supernovae and gamma-Ray Bursters , 2003 .

[36]  P. Hoppe,et al.  Evidence for Extinct Vanadium-49 in Presolar Silicon Carbide Grains from Supernovae , 2002 .

[37]  Yangting Lin,et al.  Presolar Grains from the Qingzhen (EH3) Meteorite , 2002 .

[38]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[39]  L. Nittler,et al.  Presolar SiC Grains of Type A and B: Their Isotopic Compositions and Stellar Origins , 2001 .

[40]  Jelle Kaastra,et al.  Detection of the 67.9 and 78.4 keV Lines Associated with the Radioactive Decay of 44Ti in Cassiopeia A , 2001, astro-ph/0107468.

[41]  L. Nittler,et al.  Presolar SiC Grains of Type Y: Origin from Low-Metallicity Asymptotic Giant Branch Stars , 2001 .

[42]  G. Wasserburg,et al.  Circumstellar Hibonite and Corundum and Nucleosynthesis in Asymptotic Giant Branch Stars , 1999 .

[43]  P. Hoppe,et al.  Meteoritic Silicon Carbide Grains with Unusual Si-Isotopic Compositions: Evidence for an Origin in Low-Mass, Low-Metallicity Asymptotic Giant Branch Stars , 1997 .

[44]  L. Nittler,et al.  Stellar Sapphires: The Properties and Origins of Presolar Al2O3 in Meteorites , 1997 .

[45]  E. Zinner,et al.  41Ca in Presolar Graphite of Supernova Origin , 1996 .

[46]  L. Nittler,et al.  Extinct 44Ti in Presolar Graphite and SiC: Proof of a Supernova Origin , 1996 .

[47]  P. Hoppe,et al.  Silicon Nitride from Supernovae , 1995 .

[48]  P. Hoppe,et al.  Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite , 1995 .

[49]  P. Hoppe,et al.  Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite , 1994 .

[50]  L. Nittler,et al.  Interstellar oxide grains from the Tieschitz ordinary chondrite , 1994, Nature.

[51]  G. Wasserburg,et al.  Extreme ^(26)Mg and ^(17)O enrichments in an Orgueil corundum: Identification of a presolar oxide grain , 1994 .

[52]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[53]  E. Zinner,et al.  Interstellar grains within interstellar grains , 1991 .

[54]  E. Anders,et al.  Large amounts of extinct 26AI in interstellar grains from the Murchison meteorite , 1991, Nature.

[55]  M. Leising,et al.  The gamma-ray light curves of SN 1987A , 1990 .

[56]  E. Anders,et al.  Interstellar graphite in meteorites , 1990, Nature.

[57]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .

[58]  M. Leising,et al.  Gamma-ray line emission from SN1987A , 1988, Nature.

[59]  P. Fraundorf,et al.  Evidence for interstellar SiC in the Murray carbonaceous meteorite , 1987, Nature.

[60]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[61]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[62]  R. Pepin,et al.  Trapped neon in meteorites — II , 1969 .

[63]  T. K. Harrison,et al.  Principles of Statistics , 1966 .

[64]  M. Bulmer,et al.  Principles of Statistics , 1968 .

[65]  J. H. Reynolds,et al.  RARE GASES IN THE CHONDRITE RENAZZO , 1964 .

[66]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[67]  A. G. W. Cameron,et al.  NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS , 1957 .

[68]  F. Hoyle,et al.  On Nuclear Reactions Occuring in Very Hot STARS.I. the Synthesis of Elements from Carbon to Nickel. , 1954 .

[69]  S. P. W. Merrill Spectroscopic Observations of Stars of Class , 1952 .

[70]  Fred Hoyle,et al.  The Synthesis of the Elements from Hydrogen , 1946 .