Multiplication of the orbital angular momentum of phonon polaritons via sublinear dispersion

Optical vortices (OVs) promise to greatly enhance optical information capacity via orbital angular momentum (OAM) multiplexing. The need for on-chip integration of OAM technologies has prompted research into subwavelength-confined polaritonic OVs. However, the topological order imprinted by the structure used for the transduction from free-space beams to surface polaritons is inherently fixed after fabrication. Here, we overcome this limitation via dispersion-driven topological charge multiplication. We switch the OV topological charge within a small $\sim 3 \%$ frequency range by leveraging the strong sublinear dispersion of low-loss surface phonon polaritons (SPhP) on silicon carbide membranes. Applying the Huygens principle we quantitatively evaluate the topological order of the experimental OVs detected by near-field imaging. We further explore the deuterogenic effect, which predicts the coexistence of multiple topological charges in higher-order polaritonic OVs. Our work demonstrates a viable method to manipulate the topological charge of polaritonic OVs, paving the way for the exploration of novel OAM-enabled light-matter interactions at mid-infrared frequencies.

[1]  M. Orenstein,et al.  Orbital Angular Momentum in Nanoplasmonic Vortices , 2023, ACS Photonics.

[2]  Yihua Bai,et al.  Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light , 2022, SSRN Electronic Journal.

[3]  Kenji Watanabe,et al.  Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges , 2022, eLight.

[4]  Yihua Bai,et al.  Plasmonic vortices: a review , 2022, Journal of Optics.

[5]  A. Ambrosio,et al.  Radially and Azimuthally Pure Vortex Beams from Phase-Amplitude Metasurfaces , 2022, ACS photonics.

[6]  D. Cory,et al.  Experimental realization of neutron helical waves , 2022, Science advances.

[7]  Igor P. Ivanov Promises and challenges of high-energy vortex states collisions , 2022, Progress in Particle and Nuclear Physics.

[8]  E. Sutter,et al.  Imaging Anisotropic Waveguide Exciton Polaritons in Tin Sulfide. , 2022, Nano letters.

[9]  J. Rho,et al.  Optical metasurfaces for generating and manipulating optical vortex beams , 2022, Nanophotonics.

[10]  F. Capasso,et al.  Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics , 2021, Nature Communications.

[11]  S. A. Maier,et al.  Nanophotonic Materials for Twisted Light Manipulation. , 2021, Advanced materials.

[12]  A. Millis,et al.  Polaritonic Vortices with a Half-Integer Charge. , 2021, Nano letters.

[13]  S. Maier,et al.  Orbital-Angular-Momentum-Controlled Hybrid Nanowire Circuit. , 2021, Nano letters.

[14]  A. Overvig,et al.  Thermal Metasurfaces: Complete Emission Control by Combining Local and Nonlocal Light-Matter Interactions , 2021 .

[15]  I. Kaminer,et al.  Vortex beams of atoms and molecules , 2021, Science.

[16]  G. Bartal,et al.  Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy , 2021, Nature Photonics.

[17]  C. Qiu,et al.  Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures , 2020, Proceedings of the National Academy of Sciences.

[18]  M. Orenstein,et al.  Orbital angular momentum multiplication in plasmonic vortex cavities , 2020, Science Advances.

[19]  C. Qiu,et al.  Deuterogenic Plasmonic Vortices. , 2020, Nano letters.

[20]  Michal Lipson,et al.  Femtosecond exciton dynamics in WSe2 optical waveguides , 2020, Nature Communications.

[21]  R. Agarwal,et al.  Photocurrent detection of the orbital angular momentum of light , 2020, Science.

[22]  B. Hecht,et al.  Mono-crystalline gold platelets: a high-quality platform for surface plasmon polaritons , 2019, Nanophotonics.

[23]  H. Giessen,et al.  Interaction of orbital angular momentum light with Rydberg excitons: Modifying dipole selection rules , 2019, Physical Review B.

[24]  G. Bartal,et al.  Spin-Orbit Interaction of Light in Plasmonic Lattices. , 2019, Nano letters.

[25]  Jiao Lin,et al.  Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film , 2018, Nature Communications.

[26]  F. Capasso,et al.  Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures , 2018, Science Advances.

[27]  G. Bartal,et al.  Optical skyrmion lattice in evanescent electromagnetic fields , 2018, Science.

[28]  C. Eom,et al.  Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure , 2018, Nature Materials.

[29]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[30]  Kebin Fan,et al.  Graphene metamaterial spatial light modulator for infrared single pixel imaging. , 2017, Optics express.

[31]  N. Passler,et al.  Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures: erratum , 2017, Journal of the Optical Society of America B.

[32]  H. Giessen,et al.  Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices , 2017, Science.

[33]  M. Soljačić,et al.  Shaping polaritons to reshape selection rules , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[34]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[35]  Min Gu,et al.  On-chip noninterference angular momentum multiplexing of broadband light , 2016, Science.

[36]  G. Bartal,et al.  Two-dimensional optical nanovortices at visible light , 2016 .

[37]  G. Bartal,et al.  Nanoscale shaping and focusing of visible light in planar metal─oxide─silicon waveguides , 2015 .

[38]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[39]  D. Cory,et al.  Controlling neutron orbital angular momentum , 2015, Nature.

[40]  Federico Capasso,et al.  Near-Field Imaging of Phased Array Metasurfaces. , 2015, Nano letters.

[41]  F. J. Rodríguez-Fortuño,et al.  Spin–orbit interactions of light , 2015, Nature Photonics.

[42]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[43]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[44]  Shin-Tson Wu,et al.  Fast-response IR spatial light modulators with a polymer network liquid crystal , 2015, Photonics West - Optoelectronic Materials and Devices.

[45]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[46]  S. Cheong,et al.  Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics , 2014, Nature Physics.

[47]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[48]  Robert Fickler,et al.  Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information , 2014, Nature Communications.

[49]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[50]  Federico Capasso,et al.  Holographic detection of the orbital angular momentum of light with plasmonic photodiodes , 2012, Nature Communications.

[51]  G. Shvets,et al.  Real-space mapping of Fano interference in plasmonic metamolecules. , 2011, Nano letters.

[52]  P. Schattschneider,et al.  Production and application of electron vortex beams , 2010, Nature.

[53]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[54]  Akira Tonomura,et al.  Generation of electron beams carrying orbital angular momentum , 2010, Nature.

[55]  Byoungho Lee,et al.  Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. , 2010, Nano letters.

[56]  J. Greffet,et al.  Huygens-Fresnel principle for surface plasmons. , 2009, Optics express.

[57]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[58]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[59]  I. Carusotto,et al.  Quantized vortices in an exciton–polariton condensate , 2008, 0801.1916.

[60]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[61]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[62]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[63]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[64]  O. V. Lounasmaa,et al.  Vortices in rotating superfluid 3He. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Abrikosov The magnetic properties of superconducting alloys , 1957 .