Hybrid pentacene/a-silicon solar cells utilizing multiple carrier generation via singlet exciton fission

Silicon dominates the solar cell market because of its abundance, mature production processes, and high efficiencies, with the best solar cells approaching the Shockley-Queisser limit. Multiple exciton photogeneration provides a route to solar cells that surpass the Shockley-Queisser limit, and we report the use of pentacene, for which photogenerated singlet excitons rapidly convert into two lower-energy spin-triplet excitons. We report solar cells that couple amorphous silicon to pentacene. We show that a thin layer of nanocrystals between silicon and pentacene allows simultaneously harnessing low-energy photons absorbed in silicon and high-energy photons absorbed in pentacene, generating two excitons via singlet fission.

[1]  Mark W. B. Wilson,et al.  In situ measurement of exciton energy in hybrid singlet-fission solar cells , 2012, Nature Communications.

[2]  P. Yu,et al.  Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency , 2012 .

[3]  Yi Cui,et al.  High‐Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector , 2012 .

[4]  Jhantu Kumar Saha,et al.  Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. , 2012, Nano letters.

[5]  Mark W. B. Wilson,et al.  Singlet exciton fission-sensitized infrared quantum dot solar cells. , 2012, Nano letters.

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[7]  Vladimir Bulović,et al.  Practical Roadmap and Limits to Nanostructured Photovoltaics , 2011, Advanced materials.

[8]  J. Sturm,et al.  Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells , 2011, Advanced materials.

[9]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[10]  Jenny Clark,et al.  Ultrafast dynamics of exciton fission in polycrystalline pentacene. , 2011, Journal of the American Chemical Society.

[11]  M. Bawendi,et al.  Perspective on the prospects of a carrier multiplication nanocrystal solar cell. , 2011, Nano letters.

[12]  Chun-Ying Huang,et al.  Efficient light harvesting and carrier transport in PbS quantum dots/silicon nanotips heterojunctions , 2011 .

[13]  Akshay Rao,et al.  Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. , 2010, Journal of the American Chemical Society.

[14]  V. Klimov,et al.  Apparent versus true carrier multiplication yields in semiconductor nanocrystals. , 2010, Nano letters.

[15]  K. Leo,et al.  Antenna effects and improved efficiency in multiple heterojunction photovoltaic cells based on pentacene, zinc phthalocyanine, and C60 , 2009 .

[16]  Priya J. Jadhav,et al.  High efficiency organic multilayer photodetectors based on singlet exciton fission , 2009 .

[17]  Bernard Kippelen,et al.  Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: Effects of exciton blocking layer thickness and thermal annealing , 2007 .

[18]  Yoshiki Kinoshita,et al.  Control of open-circuit voltage in organic photovoltaic cells by inserting an ultrathin metal-phthalocyanine layer , 2007 .

[19]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[20]  Ajay K. Pandey,et al.  Pentacene/Perylene co-deposited solar cells , 2006 .

[21]  R. Schaller,et al.  Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. , 2005, Physical review letters.

[22]  Jeffrey C. Yang Advances in amorphous silicon alloy technology—the achievement of high‐efficiency multijunction solar cells and modules , 1998 .

[23]  P. Cabarrocas,et al.  Defect states in the intrinsic layer of amorphous silicon solar cells studied by the constant-photocurrent method , 1998 .

[24]  A. A. Villaeys,et al.  Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy , 1995 .

[25]  H. Sakai Status of amorphous silicon solar cell technologies in Japan , 1994 .

[26]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .