Context browsing with mobiles - when less is more

Except for a handful of "mobile" Web sites, the Web is designed for browsing using personal computers with large screens capable of fully rendering the content of most Web pages. Browsing with handhelds, such as small-screen PDA's or cell phones, usually involves a lot of horizontal and vertical scrolling, thus making Web browsing time-consuming and strenuous. At the same time, one isoften only interested in a fragment of a Web page, which again may not fit on the limited-size screens of mobile devices, requiring more scrolling in both dimensions. In this paper, we address the problem of browsing fatigue during mobile Web access using geometric segmentation of Web pages and the notion of context. Our prototype system, CMo, reduces information overload by allowing its users to see the most relevant fragment of the page and then navigate between other fragments if necessary. On following a link, CMo captures the context of the link, employing a simple topic-boundary detection technique; then, it uses the context to identify relevant information in the next page with the help of a Support Vector Machine, a statistical machine-learning model. Our experiments show that the use of context can potentially save browsing time and improve the mobile browsing experience.

[1]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[2]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[3]  Andreas Paepcke,et al.  Seeing the whole in parts: text summarization for web browsing on handheld devices , 2001, WWW '01.

[4]  Wee Sun Lee,et al.  Using link analysis to improve layout on mobile devices , 2004, WWW '04.

[5]  Yu Chen,et al.  Html Page Analysis based on Visual cues , 2003, Web Document Analysis.

[6]  Wei-Ying Ma,et al.  Detecting web page structure for adaptive viewing on small form factor devices , 2003, WWW '03.

[7]  Qiong Luo,et al.  Slicing*-tree based web page transformation for small displays , 2005, CIKM '05.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  Lakshmish Ramaswamy,et al.  Automatic detection of fragments in dynamically generated web pages , 2004, WWW '04.

[10]  I. V. Ramakrishnan,et al.  Combating information overload in non-visual web access using context , 2007, IUI '07.

[11]  Cécile Paris,et al.  Automatically summarising Web sites: is there a way around it? , 2000, CIKM '00.

[12]  Andreas Paepcke,et al.  Accordion summarization for end-game browsing on PDAs and cellular phones , 2001, CHI.

[13]  Junji Maeda,et al.  Site-wide annotation: reconstructing existing pages to be accessible , 2002, Assets '02.

[14]  Christopher C. Yang,et al.  Fractal summarization for mobile devices to access large documents on the web , 2003, WWW '03.

[15]  I. V. Ramakrishnan,et al.  Bootstrapping semantic annotation for content-rich HTML documents , 2005, 21st International Conference on Data Engineering (ICDE'05).

[16]  Virpi Roto,et al.  Navigating in a mobile XHTML application , 2003, CHI '03.

[17]  Andreas Paepcke,et al.  Power browser: efficient Web browsing for PDAs , 2000, CHI.

[18]  Bambang Parmanto,et al.  AcceSS: accessibility through simplification & summarization , 2005, W4A '05.

[19]  A. K. Singh,et al.  An Efficient Method of Eliminating Noisy Information in Web Pages for Data Mining , 2004, CIT.

[20]  Carole A. Goble,et al.  Middleware to expand context and preview in hypertext , 2004, ACM SIGACCESS Access. Comput..

[21]  George Buchanan,et al.  Improving mobile internet usability , 2001, WWW '01.

[22]  Andreas Paepcke,et al.  Focused Web searching with PDAs , 2000, Comput. Networks.

[23]  Patrick Baudisch,et al.  Summary thumbnails: readable overviews for small screen web browsers , 2005, CHI.

[24]  Carole A. Goble,et al.  How much is too much in a hypertext link?: investigating context and preview -- a formative evaluation , 2004, HYPERTEXT '04.

[25]  Shumeet Baluja,et al.  Browsing on small screens: recasting web-page segmentation into an efficient machine learning framework , 2006, WWW '06.

[26]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[27]  David W. Embley,et al.  Record Location and Reconfiguration in Unstructured Multiple-Record Web Documents , 2000, WebDB.

[28]  Eyal de Lara,et al.  PageTailor: reusable end-user customization for the mobile web , 2007, MobiSys '07.

[29]  I. V. Ramakrishnan,et al.  Automatic Annotation of Content-Rich HTML Documents: Structural and Semantic Analysis , 2003, SEMWEB.

[30]  Wei-Ying Ma,et al.  Learning block importance models for web pages , 2004, WWW '04.

[31]  Fuad Rahman,et al.  Automatic summarization of Web content to smaller display devices , 2001, Proceedings of Sixth International Conference on Document Analysis and Recognition.

[32]  I. V. Ramakrishnan,et al.  Automatic discovery of semantic structures in HTML documents , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[33]  Wei-Ying Ma,et al.  Improving pseudo-relevance feedback in web information retrieval using web page segmentation , 2003, WWW '03.

[34]  Timo Laakko,et al.  Two approaches to bringing Internet services to WAP devices , 2000, Comput. Networks.

[35]  Gail E. Kaiser,et al.  DOM-based content extraction of HTML documents , 2003, WWW '03.