Precision astrometry mission for exoplanet detection around binary stars

We propose an innovative low-cost mission capable of detecting potentially habitable planets around a sample of solartype stars near the sun. The finding of rocky planets in temperate orbits among our immediate stellar neighbors will be a signature discovery. Our mission will deliver relative measurements of stellar position and motion at sub-micro arcsecond precision. These data, in turn, will reveal the presence of orbiting exoplanets. For the case of our primary targets Alpha Centauri A and B, objects below one Earth mass will be accessible when the end-of-mission astrometric precision requirement of 0.4 micro arcsecond is achieved. TOLIMAN will directly reveal the presence of sub-earth mass planets and constrain it orbit and mass This paper describes the optical and mechanical architecture of the mission, and first order instrument design. We also explain the instrument stability requirements imposed by the diffractive pupil post-processing calibration limitations. Our design baseline is a stable two-mirror telescope that images the field directly on CCD camera minimizing the number of reflections and optical components.

[1]  X. Quintana,et al.  Reliability of Liquid Crystals in Space Photonics , 2015, IEEE Photonics Journal.

[2]  Paul A. Wiegert,et al.  The Stability of Planets in the Alpha Centauri System , 1997 .

[3]  Ravi K. Komanduri,et al.  Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. , 2013, Optics express.

[4]  M. R. Haas,et al.  TERRESTRIAL PLANET OCCURRENCE RATES FOR THE KEPLER GK DWARF SAMPLE , 2015, 1506.04175.

[5]  J. Lissauer,et al.  LONG-TERM STABILITY OF PLANETS IN THE α CENTAURI SYSTEM , 2016, 1604.04917.

[6]  J. Lissauer,et al.  Terrestrial planet formation surrounding close binary stars , 2006, astro-ph/0607222.

[7]  C. Lovis,et al.  Proxima’s orbit around α Centauri , 2016, 1611.03495.

[8]  D. Pourbaix,et al.  Parallax and masses of α Centauri revisited , 2016, 1601.01636.

[9]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[10]  M. Escuti,et al.  Direct-writing of complex liquid crystal patterns. , 2014, Optics express.

[11]  V. Makarov VARIABILITY OF SURFACE FLOWS ON THE SUN AND THE IMPLICATIONS FOR EXOPLANET DETECTION , 2010, 1004.1383.

[12]  Olivier Guyon,et al.  The TOLIMAN space telescope , 2018, Astronomical Telescopes + Instrumentation.

[13]  M. Ireland,et al.  THE IMPACT OF STELLAR MULTIPLICITY ON PLANETARY SYSTEMS. I. THE RUINOUS INFLUENCE OF CLOSE BINARY COMPANIONS , 2016, 1604.05744.

[14]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[15]  G. Laughlin,et al.  Are Proxima and α Centauri Gravitationally Bound? , 2006, astro-ph/0607401.

[16]  E. Doumayrou,et al.  A detector interferometric calibration experiment for high precision astrometry , 2016, 1609.02477.

[17]  J. Brewer,et al.  Planet Detectability in the Alpha Centauri System , 2017, 1711.06320.

[18]  Olivier Guyon,et al.  HIGH PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE , 2012 .

[19]  R. L. Heredero,et al.  Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs , 2011, Optical Engineering + Applications.

[20]  Chengxing Zhai,et al.  Micro-pixel accuracy centroid displacement estimation and detector calibration , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Frans Snik,et al.  The vector-APP: a broadband apodizing phase plate that yields complementary PSFs , 2012, Other Conferences.

[22]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[23]  L. Lindegren,et al.  Limits of ultra-high-precision optical astrometry - Stellar surface structures , 2007, 0706.1646.

[24]  G. Love,et al.  Proton irradiation of liquid crystal based adaptive optical devices , 2012 .