Complete nitrification by Nitrospira bacteria

[1]  Alice C McHardy,et al.  PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes , 2014, PeerJ.

[2]  P. Nielsen,et al.  Complete nitrification by a single microorganism , 2015, Nature.

[3]  Michael Wagner,et al.  Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira , 2015, Proceedings of the National Academy of Sciences.

[4]  M. Wagner,et al.  Cyanate as energy source for nitrifiers , 2015, Nature.

[5]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[6]  E. Spieck,et al.  Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. , 2015, FEMS microbiology ecology.

[7]  M. Wagner,et al.  Functionally relevant diversity of closely related Nitrospira in activated sludge , 2014, The ISME Journal.

[8]  Mick Watson,et al.  poRe: an R package for the visualization and analysis of nanopore sequencing data , 2015, Bioinform..

[9]  E. Spieck,et al.  Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation , 2014, Applied and Environmental Microbiology.

[10]  Thomas Hackl,et al.  proovread: large-scale high-accuracy PacBio correction through iterative short read consensus , 2014, Bioinform..

[11]  Andreas Richter,et al.  NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. , 2014, Environmental microbiology.

[12]  D. Le Paslier,et al.  Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation , 2014, Science.

[13]  Walter Pirovano,et al.  SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information , 2014, BMC Bioinformatics.

[14]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[15]  I-Min A. Chen,et al.  IMG 4 version of the integrated microbial genomes comparative analysis system , 2013, Nucleic Acids Res..

[16]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[17]  D. Le Paslier,et al.  Enrichment and Genome Sequence of the Group I.1a Ammonia-Oxidizing Archaeon “Ca. Nitrosotenuis uzonensis” Representing a Clade Globally Distributed in Thermal Habitats , 2013, PloS one.

[18]  S. Tsuneda,et al.  Isolation of Nitrospira belonging to Sublineage II from a Wastewater Treatment Plant , 2013, Microbes and environments.

[19]  P. Hugenholtz,et al.  Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes , 2013, Nature Biotechnology.

[20]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[21]  Stefan Engelen,et al.  MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data , 2012, Nucleic Acids Res..

[22]  J. Prosser,et al.  Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. , 2012, Trends in microbiology.

[23]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[24]  D. Le Paslier,et al.  Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi , 2012, The ISME Journal.

[25]  Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge , 2012, Applied Microbiology and Biotechnology.

[26]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[27]  D. Stahl,et al.  The Divergent AmoC3 Subunit of Ammonia Monooxygenase Functions as Part of a Stress Response System in Nitrosomonas europaea , 2012, Journal of bacteriology.

[28]  P. Claus,et al.  Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions , 2011, The ISME Journal.

[29]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[30]  Andreas Richter,et al.  amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions , 2012, Environmental microbiology.

[31]  Ruben E. Valas,et al.  Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage , 2011, The ISME Journal.

[32]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[33]  Cliff Han,et al.  Genome Sequence of Nitrosomonas sp. Strain AL212, an Ammonia-Oxidizing Bacterium Sensitive to High Levels of Ammonia , 2011, Journal of bacteriology.

[34]  F. Maixner,et al.  Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. , 2011, FEMS microbiology ecology.

[35]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[36]  Thomas Rattei,et al.  A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria , 2010, Proceedings of the National Academy of Sciences.

[37]  W. Wanek,et al.  Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. , 2010 .

[38]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[39]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[40]  D. Stahl,et al.  Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria , 2009, Nature.

[41]  Nicolas Lartillot,et al.  PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating , 2009, Bioinform..

[42]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[43]  H. Daims Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. , 2009, Cold Spring Harbor protocols.

[44]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[45]  M. Strous,et al.  Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. , 2008, Environmental microbiology.

[46]  M. Tourna,et al.  Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. , 2008, Environmental microbiology.

[47]  P. Chain,et al.  Complete Genome Sequence of Nitrosospira multiformis, an Ammonia-Oxidizing Bacterium from the Soil Environment , 2008, Applied and Environmental Microbiology.

[48]  A. Gieseke,et al.  Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. , 2008, FEMS microbiology ecology.

[49]  M. Klotz,et al.  Nitrifier genomics and evolution of the nitrogen cycle. , 2008, FEMS microbiology letters.

[50]  P. Berube,et al.  Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. , 2007, Environmental microbiology.

[51]  P. Chain,et al.  The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. , 2007, Annual review of microbiology.

[52]  M. W. Taylor,et al.  Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential , 2007, Microbiology and Molecular Biology Reviews.

[53]  W. Ludwig,et al.  A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium,Nitrospira moscoviensis sp. nov. and its phylogenetic relationship , 1995, Archives of Microbiology.

[54]  S. Malfatti,et al.  Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707 , 2006, Applied and Environmental Microbiology.

[55]  Michael Wagner,et al.  Nitrite concentration influences the population structure of Nitrospira-like bacteria. , 2006, Environmental microbiology.

[56]  P. Bottomley,et al.  Nitrifiers: More than 100 Years from Isolation to Genome Sequences , 2006 .

[57]  J. Kreft,et al.  Why is metabolic labour divided in nitrification? , 2006, Trends in microbiology.

[58]  Michael Wagner,et al.  daime, a novel image analysis program for microbial ecology and biofilm research. , 2006, Environmental microbiology.

[59]  M. Wagner,et al.  Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. Molin,et al.  Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp , 2005, Applied and Environmental Microbiology.

[61]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[62]  M. Klotz,et al.  Structure and Sequence Conservation of hao Cluster Genes of Autotrophic Ammonia-Oxidizing Bacteria: Evidence for Their Evolutionary History , 2005, Applied and Environmental Microbiology.

[63]  S. Bonhoeffer,et al.  Evolution of Cross‐Feeding in Microbial Populations , 2004, The American Naturalist.

[64]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[65]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[66]  E. Kandeler,et al.  Short-term assay of soil urease activity using colorimetric determination of ammonium , 1988, Biology and Fertility of Soils.

[67]  J. Waterbury,et al.  Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium , 1986, Archives of Microbiology.

[68]  C. Schleper,et al.  Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. , 2003, Environmental microbiology.

[69]  R. Amann,et al.  In situ distribution and activity of nitrifying bacteria in freshwater sediment. , 2003, Environmental microbiology.

[70]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[71]  D. B. Nedwell,et al.  Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. , 2002, Microbiology.

[72]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[73]  K. Schleifer,et al.  In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants , 2001, Applied and Environmental Microbiology.

[74]  D. Wink,et al.  A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. , 2001, Nitric oxide : biology and chemistry.

[75]  M. Wagner,et al.  Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys , 2000, Applied and Environmental Microbiology.

[76]  K. Schleifer,et al.  The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. , 1999, Systematic and applied microbiology.

[77]  J. C. van den Heuvel,et al.  Microscale Distribution of Populations and Activities ofNitrosospira and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by In Situ Hybridization and the Use of Microsensors , 1999, Applied and Environmental Microbiology.

[78]  R. Amann,et al.  Identification and Activities In Situ of Nitrosospiraand Nitrospira spp. as Dominant Populations in a Nitrifying Fluidized Bed Reactor , 1998, Applied and Environmental Microbiology.

[79]  E. Delong,et al.  Nitrospira-Like Bacteria Associated with Nitrite Oxidation in Freshwater Aquaria , 1998, Applied and Environmental Microbiology.

[80]  W. Liesack,et al.  The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations , 1997, Applied and environmental microbiology.

[81]  M. Wagner,et al.  Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria , 1996, Applied and environmental microbiology.

[82]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[83]  D. Stahl,et al.  Nitrification as a source of soluble organic substrate in biological treatment , 1994 .

[84]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[85]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.