Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number

We propose a theoretical framework to clearly explain the inaccuracy of Godunov type schemes applied to the compressible Euler system at low Mach number on a Cartesian mesh. In particular, we clearly explain why this inaccuracy problem concerns the 2D or 3D geometry and does not concern the 1D geometry. The theoretical arguments are based on the Hodge decomposition, on the fact that an appropriate well-prepared subspace is invariant for the linear wave equation and on the notion of first-order modified equation. This theoretical approach allows to propose a simple modification that can be applied to any colocated scheme of Godunov type or not in order to define a large class of colocated schemes accurate at low Mach number on any mesh. It also allows to justify colocated schemes that are accurate at low Mach number as, for example, the Roe-Turkel and the AUSM^+-up schemes, and to find a link with a colocated incompressible scheme stabilized with a Brezzi-Pitkaranta type stabilization. Numerical results justify the theoretical arguments proposed in this paper.

[1]  E. Sinibaldi,et al.  A Preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena , 2003 .

[2]  Jean-Marc Hérard,et al.  A sequel to a rough Godunov scheme: application to real gases , 2000 .

[3]  Ephane Dellacherie,et al.  CHECKERBOARD MODES AND WAVE EQUATION , 2009 .

[4]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[5]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[6]  Stéphane Dellacherie,et al.  The influence of cell geometry on the Godunov scheme applied to the linear wave equation , 2010, J. Comput. Phys..

[7]  Jan Vierendeels,et al.  Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference , 2005 .

[8]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[9]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[10]  Dragan Vidovic,et al.  A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids , 2006, J. Comput. Phys..

[11]  M. Liou A Sequel to AUSM , 1996 .

[12]  Ben Thornber,et al.  Numerical dissipation of upwind schemes in low Mach flow , 2008 .

[14]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[15]  Neil D. Sandham,et al.  Large Eddy Simulation of Flow Around an Airfoil Near Stall , 2010 .

[16]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[17]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[18]  Thierry Gallouët,et al.  On an Approximate Godunov Scheme , 1999 .

[19]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[20]  G. Volpe Performance of compressible flow codes at low Mach numbers , 1993 .

[21]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[22]  Hervé Guillard,et al.  Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model , 2008 .

[23]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[24]  A. Beccantini Colella-Glaz Splitting Scheme for Thermally Perfect Gases , 2001 .

[25]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[26]  V. Guinot Approximate Riemann Solvers , 2010 .

[27]  Chun-wei Gu,et al.  Development of Roe-type scheme for all-speed flows based on preconditioning method , 2009 .

[28]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[29]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[30]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[31]  N. Alemdaroglu,et al.  Improvements to compressible Euler methods for low-Mach number flows , 2000 .

[32]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[33]  S. Clerc,et al.  Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows , 2000 .

[34]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[35]  Georg Bader,et al.  The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..

[36]  Raphaèle Herbin,et al.  Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON A STABILIZED COLOCATED FINITE VOLUME SCHEME FOR THE , 2013 .

[37]  Eli Turkel,et al.  Review of preconditioning methods for fluid dynamics , 1993 .

[38]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[39]  Jan Vierendeels,et al.  Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 1, Reference solutions , 2005 .

[40]  Philipp Birken,et al.  Stability of Preconditioned Finite Volume Schemes at Low Mach Numbers , 2005 .