Real‐time flow with fast GPU reconstruction for continuous assessment of cardiac output

To demonstrate the feasibility of real‐time phase contrast magnetic resonance (PCMR) assessment of continuous cardiac output with a heterogeneous (CPU/GPU) system for online image reconstruction.

[1]  Vivek Muthurangu,et al.  Rapid flow assessment of congenital heart disease with high-spatiotemporal-resolution gated spiral phase-contrast MR imaging. , 2011, Radiology.

[2]  David Atkinson,et al.  Automatic segmentation propagation of the aorta in real‐time phase contrast MRI using nonrigid registration , 2011, Journal of magnetic resonance imaging : JMRI.

[3]  David Atkinson,et al.  A networked GPU reconstructor within the clinical workflow for rapid fat quantification. , 2011 .

[4]  Yue Zhuo,et al.  Sparse regularization in MRI iterative reconstruction using GPUs , 2010, 2010 3rd International Conference on Biomedical Engineering and Informatics.

[5]  Vivek Muthurangu,et al.  Assessing vascular response to exercise using a combination of real‐time spiral phase contrast MR and noninvasive blood pressure measurements , 2010, Journal of magnetic resonance imaging : JMRI.

[6]  Sébastien Roujol,et al.  Online real‐time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware , 2009, Magnetic resonance in medicine.

[7]  Justin P. Haldar,et al.  Accelerating advanced mri reconstructions on gpus , 2008, CF '08.

[8]  Tobias Schaeffter,et al.  Accelerating the Nonequispaced Fast Fourier Transform on Commodity Graphics Hardware , 2008, IEEE Transactions on Medical Imaging.

[9]  David Atkinson,et al.  Cartesian SENSE and k‐t SENSE reconstruction using commodity graphics hardware , 2008, Magnetic resonance in medicine.

[10]  Peter Boesiger,et al.  Accelerating cine phase‐contrast flow measurements using k‐t BLAST and k‐t SENSE , 2005, Magnetic resonance in medicine.

[11]  Peter Kellman,et al.  Real‐time accelerated interactive MRI with adaptive TSENSE and UNFOLD , 2003, Magnetic resonance in medicine.

[12]  Daniel Rosenfeld,et al.  New approach to gridding using regularization and estimation theory , 2002, Magnetic resonance in medicine.

[13]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[14]  Eckart Fleck,et al.  Magnetic resonance flow measurements in real time: Comparison with a standard gradient‐echo technique , 2001, Journal of magnetic resonance imaging : JMRI.

[15]  Bob S. Hu,et al.  Real‐time color flow MRI , 2000, Magnetic resonance in medicine.

[16]  N J Pelc,et al.  Concomitant gradient terms in phase contrast MR: Analysis and correction , 1998, Magnetic resonance in medicine.

[17]  H. Hecht,et al.  Supine bicycle stress echocardiography: peak exercise imaging is superior to postexercise imaging. , 1993, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[18]  P. D. de Leeuw,et al.  Impedance cardiography for cardiac output measurement: an evaluation of accuracy and limitations. , 1990, European heart journal.

[19]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[20]  W H Guier,et al.  Beat-by-beat stroke volume from aortic-pulse-pressure analysis. , 1974, IEEE transactions on bio-medical engineering.

[21]  M. Frick,et al.  BASE-LINE EFFECTS ON RESPONSE OF STROKE VOLUME TO LEG EXERCISE IN THE SUPINE POSITION. , 1964, Journal of applied physiology.