Structural basis of DNA recognition by p53 tetramers.

[1]  E. Kim,et al.  The versatile interactions of p53 with DNA: when flexibility serves specificity , 2006, Cell Death and Differentiation.

[2]  Antonina Andreeva,et al.  Core domain interactions in full-length p53 in solution , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[4]  T. Haran,et al.  TBP flanking sequences: asymmetry of binding, long-range effects and consensus sequences , 2006, Nucleic Acids Research.

[5]  David P Lane,et al.  p53 isoforms can regulate p53 transcriptional activity. , 2005, Genes & development.

[6]  C. Klein,et al.  Cooperative binding of p53 to DNA: regulation by protein-protein interactions through a double salt bridge. , 2005, Angewandte Chemie.

[7]  W. Deppert,et al.  A Novel Human p53 Isoform Is an Essential Element of the ATR-Intra-S Phase Checkpoint , 2005, Cell.

[8]  A. Fersht,et al.  Comparative binding of p53 to its promoter and DNA recognition elements. , 2005, Journal of molecular biology.

[9]  C. Prives,et al.  p53 linear diffusion along DNA requires its C terminus. , 2004, Molecular cell.

[10]  M. Kulesz-Martin,et al.  Facilitated search for specific genomic targets by p53 c-terminal basic DNA binding domain , 2004, Cancer biology & therapy.

[11]  A. Fersht,et al.  Cooperative binding of tetrameric p53 to DNA. , 2004, Journal of molecular biology.

[12]  R. Roeder,et al.  Ordered Cooperative Functions of PRMT1, p300, and CARM1 in Transcriptional Activation by p53 , 2004, Cell.

[13]  J. Wölcke,et al.  Analysis of p53 “Latency” and “Activation” by Fluorescence Correlation Spectroscopy , 2003, Journal of Biological Chemistry.

[14]  M. Oren,et al.  Decision making by p53: life, death and cancer , 2003, Cell Death and Differentiation.

[15]  Francesca Storici,et al.  Differential Transactivation by the p53 Transcription Factor Is Highly Dependent on p53 Level and Promoter Target Sequence , 2002, Molecular and Cellular Biology.

[16]  Ting Wang,et al.  Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites , 2002, Oncogene.

[17]  Johannes Buchner,et al.  p53 contains large unstructured regions in its native state. , 2002, Journal of molecular biology.

[18]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[19]  L. Serpell,et al.  Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor , 2002, The EMBO journal.

[20]  C. Harris,et al.  The IARC TP53 database: New online mutation analysis and recommendations to users , 2002, Human mutation.

[21]  Richard J Morris,et al.  ARP/wARP's model-building algorithms. I. The main chain. , 2002, Acta crystallographica. Section D, Biological crystallography.

[22]  A. Fersht,et al.  Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. , 2002, Journal of molecular biology.

[23]  D. Livingston,et al.  Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. , 2002, Genes & development.

[24]  C. Klein,et al.  NMR Spectroscopy Reveals the Solution Dimerization Interface of p53 Core Domains Bound to Their Consensus DNA* , 2001, The Journal of Biological Chemistry.

[25]  R. Iggo,et al.  Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Xin Lu,et al.  ASPP proteins specifically stimulate the apoptotic function of p53. , 2001, Molecular cell.

[27]  A. Fersht,et al.  Rescuing the function of mutant p53 , 2001, Nature Reviews Cancer.

[28]  C. Prives,et al.  The C-terminus of p53: the more you learn the less you know , 2001, Nature Structural Biology.

[29]  J. Espinosa,et al.  Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. , 2001, Molecular cell.

[30]  Nicholas M. Luscombe,et al.  Amino acid?base interactions: a three-dimensional analysis of protein?DNA interactions at an atomic level , 2001, Nucleic Acids Res..

[31]  J. Pietenpol,et al.  Kinetics of p53 Binding to Promoter Sites In Vivo , 2001, Molecular and Cellular Biology.

[32]  R. Marmorstein,et al.  Crystal Structure of the Mouse p53 Core DNA-binding Domain at 2.7 Å Resolution* , 2001, The Journal of Biological Chemistry.

[33]  C. Prives,et al.  The N Terminus of p53 Regulates Its Dissociation from DNA* , 2000, The Journal of Biological Chemistry.

[34]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[35]  T. Haran,et al.  Signals for TBP/TATA box recognition. , 2000, Journal of molecular biology.

[36]  P. May,et al.  Twenty years of p53 research: structural and functional aspects of the p53 protein , 1999, Oncogene.

[37]  J. Manfredi,et al.  One Mechanism for Cell Type-specific Regulation of thebax Promoter by the Tumor Suppressor p53 Is Dictated by the p53 Response Element* , 1999, The Journal of Biological Chemistry.

[38]  V. Zhurkin,et al.  p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Wojciech Makalowski,et al.  Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features , 1999, Oncogene.

[40]  C. Prives,et al.  The p53 pathway , 1999, The Journal of pathology.

[41]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[42]  J. Manfredi,et al.  Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. , 1998, Genes & development.

[43]  J. Sühnel,et al.  Molecular modelling and footprinting studies of DNA minor groove binders: bisquaternary ammonium heterocyclic compounds. , 1998, Anti-cancer drug design.

[44]  K. McLure,et al.  How p53 binds DNA as a tetramer , 1998, The EMBO journal.

[45]  R. Dickerson,et al.  DNA bending: the prevalence of kinkiness and the virtues of normality. , 1998, Nucleic acids research.

[46]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[47]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[48]  N. Pavletich,et al.  Structure of the p53 Tumor Suppressor Bound to the Ankyrin and SH3 Domains of 53BP2 , 1996, Science.

[49]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[50]  P. Tegtmeyer,et al.  Interaction of p53 with its consensus DNA-binding site , 1995, Molecular and cellular biology.

[51]  G. Marius Clore,et al.  Refined solution structure of the oligomerization domain of the tumour suppressor p53 , 1995, Nature Structural Biology.

[52]  N. Pavletich,et al.  Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms , 1995, Science.

[53]  C. Arrowsmith,et al.  Solution structure of the tetrameric minimum transforming domain of p53 , 1995, Nature Structural Biology.

[54]  T. Halazonetis,et al.  The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. , 1995, The EMBO journal.

[55]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[56]  P. Friedman,et al.  The p53 protein is an unusually shaped tetramer that binds directly to DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[58]  A. Joachimiak,et al.  The DNA target of the trp repressor. , 1992, The EMBO journal.

[59]  J. Shay,et al.  A transcriptionally active DNA-binding site for human p53 protein complexes , 1992, Molecular and cellular biology.

[60]  K. Kinzler,et al.  Definition of a consensus binding site for p53 , 1992, Nature Genetics.

[61]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[62]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[63]  P. V. von Hippel,et al.  Facilitated Target Location in Biological Systems* , 2022 .

[64]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[65]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[66]  C. Prives,et al.  Covalent and noncovalent modifiers of the p53 protein , 1999, Cellular and Molecular Life Sciences CMLS.

[67]  M. Grütter,et al.  Crystallization and structure solution of p53 (residues 326-356) by molecular replacement using an NMR model as template. , 1998, Acta crystallographica. Section D, Biological crystallography.

[68]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.